- PII
- 10.31857/S0044457X22600839-1
- DOI
- 10.31857/S0044457X22600839
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 1
- Pages
- 67-76
- Abstract
- The crystalline form of sodium-doped hexagonal borophene (B2Na2) has been studied using DFT calculations. The calculations predict the dynamic stability of B2Na2 whose structure is a flat honeycomb boron sheet sandwiched between two sodium layers. According to estimated electronic and mechanical properties, B2Na2 is a rather soft material with metallic characteristics. Evaluation of thermal stability by the molecular dynamics method indicates sufficient stability of the predicted material, which makes it possible to observe it experimentally at temperatures below 200 K.
- Keywords
- двумерные материалы DFT-расчеты зонная структура механические свойства термическая стабильность
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Geim A.K., Novoselov K.S. // Nat. Mater. 2007. V. 6. P. 183. https://doi.org/10.1038/nmat1849
- 2. Aufray B., Kara A., Vizzini S. et al. // Appl. Phys. Lett. 2010. V. 96. № 18. P. 183102. https://doi.org/10.1063/1.3419932
- 3. Lalmi B., Oughaddou H., Enriquez H. et al. // Appl. Phys. Lett. 2010. V. 97. № 22. P. 223109. https://doi.org/10.1063/1.3524215
- 4. Boustani I. // Phys. Rev. B: Condens. Matter Mater. Phys. 1997. V. 55. № 24. P. 16426. https://doi.org/10.1103/PhysRevB.55.16426
- 5. Lau K.C., Pandey R. // J. Phys. Chem. C. 2007. V. 111. № 7. P. 2906. https://doi.org/10.1021/jp066719w
- 6. Lau K.C., Pandey R. // J. Phys. Chem. B. 2008. V. 112. № 33. P. 10217. https://doi.org/10.1021/jp8052357
- 7. Zhang L.Z., Yan Q.B., Du S.X. et al. // J. Phys. Chem. C. 2012. V. 116. № 34. P. 18202. https://doi.org/10.1021/jp303616d
- 8. Liu H., Gao J., Zhao J. // Sci. Rep. 2013. V. 3. № 1. P. 3238. https://doi.org/10.1038/srep03238
- 9. Liu Y., Penev E.S., Yakobson B.I. // Angew. Chem., Int. Ed. 2013. V. 52. № 11. P. 3156. https://doi.org/10.1002/anie.201207972
- 10. Zhang Z., Yang Y., Gao G. et al. // Angew. Chem., Int. Ed. 2015. V. 54. № 44. P. 13022. https://doi.org/10.1002/anie.201505425
- 11. Mannix A.J., Zhou X.-F., Kiraly B. et al. // Science. 2015. V. 350. № 6267. P. 1513. https://doi.org/10.1126/science.aad1080
- 12. Feng B., Zhang J., Zhong Q. et al. // Nat. Chem. 2016. V. 8. № 6. P. 563. https://doi.org/10.1038/nchem.2491
- 13. Wu R., Gozar A., Božović I. // npj Quantum Materials. 2019. V. 4. № 1. P. 40. https://doi.org/10.1038/s41535-019-0181-0
- 14. Wu R., Drozdov I.K., Eltinge S. et al. // Nat. Nanotechnol. 2019. V. 14. № 1. P. 44. https://doi.org/10.1038/s41565-018-0317-6
- 15. Kiraly B., Liu X., Wang L. et al. // ACS Nano. 2019. V. 13. № 4. P. 3816. https://doi.org/10.1021/acsnano.8b09339
- 16. Li W., Kong L., Chen C. et al. // Science Bulletin. 2018. V. 63. № 5. P. 282. https://doi.org/10.1016/j.scib.2018.02.006
- 17. Zhu L., Zhao B., Zhang T. et al. // J. Phys. Chem. C. 2019. V. 123. № 23. P. 14858. https://doi.org/10.1021/acs.jpcc.9b03447
- 18. Shirodkar S.N., Penev E.S., Yakobson B.I. // Science Bulletin. 2018. V. 63. № 5. P. 270. https://doi.org/10.1016/j.scib.2018.02.019
- 19. Zhang Z., Shirodkar S.N., Yang Y. et al. // Angew. Chem., Int. Ed. 2017. V. 56. № 48. P. 15421. https://doi.org/10.1002/anie.201705459
- 20. Wang Z.-Q., Lü T.-Y., Wang H.-Q. et al. // Front. Phys. 2019. V. 14. № 3. P. 33403. https://doi.org/10.1007/s11467-019-0884-5
- 21. Zhang Z., Yang Y., Penev E.S. et al. // Adv. Funct. Mater. 2017. V. 27. № 9. P. 1605059. https://doi.org/10.1002/adfm.201605059
- 22. Mannix A.J., Zhang Z., Guisinger N.P. et al. // Nat. Nanotechnol. 2018. V. 13. № 6. P. 444. https://doi.org/10.1038/s41565-018-0157-4
- 23. Zhang Z., Penev E.S., Yakobson B.I. // Chem. Soc. Rev. 2017. V. 46. № 22. P. 6746. https://doi.org/10.1039/c7cs00261k
- 24. Xie S.-Y., Wang Y., Li X.-B. // Adv. Mater. 2019. V. 31. № 36. P. 1900392. https://doi.org/10.1002/adma.201900392
- 25. Gribanova T.N., Minyaev R.M., Minkin V.I. et al. // Struct. Chem. 2020. V. 31. № 6. P. 2105. https://doi.org/10.1007/s11224-020-01606-9
- 26. Xie Z., Meng X., Li X. et al. // Research. 2020. V. 2020. P. 2624617. https://doi.org/10.34133/2020/2624617
- 27. Zhang X., Hu J., Cheng Y. et al. // Nanoscale. 2016. V. 8. № 33. P. 15340. https://doi.org/10.1039/c6nr04186h
- 28. Banerjee S., Periyasamy G., Pati S.K. // J. Mater. Chem. A. 2014. V. 2. № 11. P. 3856. https://doi.org/10.1039/c3ta14041e
- 29. Jiang H.R., Lu Z., Wu M.C. et al. // Nano Energy. 2016. V. 23. P. 97. https://doi.org/https://doi.org/10.1016/j.nanoen.20-16.03.013
- 30. Haldar S., Mukherjee S., Singh C.V. // RSC Adv. 2018. V. 8. № 37. P. 20748. https://doi.org/10.1039/c7ra12512g
- 31. Chen X., Wang L., Zhang W. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 31. P. 20036. https://doi.org/https://doi.org/10.1016/j.ijhydene.2017. 06.143
- 32. Shi L., Ling C., Ouyang Y. et al. // Nanoscale. 2017. V. 9. № 2. P. 533. https://doi.org/10.1039/c6nr06621f
- 33. Wang Y., Jiang X., Wang Y. et al. // Phys. Chem. 2021. V. 23. № 32. P. 17150. https://doi.org/10.1039/d1cp01708j
- 34. John D., Nharangatt B., Chatanathodi R. // J. Mater. Chem. C. 2019. V. 7. № 37. P. 11493. https://doi.org/10.1039/c9tc03628h
- 35. Malinina E.A., Avdeeva V.V., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2148. https://doi.org/10.1134/s0036023610140032
- 36. Ionov S.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1589. https://doi.org/10.1134/s0036023611100123
- 37. Gribanova T.N., Minyaev R.M., Minkin V.I. // Struct. Chem. 2018. V. 29. № 1. P. 327. https://doi.org/10.1007/s11224-017-1031-y
- 38. Kresse G., Hafner J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
- 39. Kresse G., Hafner J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
- 40. Kresse G., Furthmüller J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
- 41. Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. № 1. P. 15. https://doi.org/10.1016/0927-0256 (96)00008-0
- 42. Perdew J.P., Ruzsinszky A., Csonka G.I. et al. // Phys. Rev. Lett. 2008. V. 100. № 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
- 43. Blöchl P.E. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 50. № 24. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
- 44. Kresse G., Joubert D. // Phys. Rev. B: Condens. Matter Mater. Phys. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- 45. Monkhorst H.J., Pack J.D. // Phys. Rev. B: Condens. Matter Mater. Phys. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- 46. Togo A., Tanaka I. // Scr. Mater. 2015. V. 108. P. 1. https://doi.org/10.1016/j.scriptamat.2015.07.021
- 47. Nosé S. // J. Chem. Phys. 1984. V. 81. № 1. P. 511. https://doi.org/10.1063/1.447334
- 48. Koichi M., Fujio I. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1272. https://doi.org/doi:10.1107/S0021889811038970
- 49. Emsley J. The elements / written and compiled by John Emsley, Oxford [Oxfordshire]: Clarendon Press, 1991. 2nd ed.
- 50. Mouhat F., Coudert F.-X. // Phys. Rev. B: Condens. Matter Mater. Phys. 2014. V. 90. № 22. P. 224104. https://doi.org/10.1103/PhysRevB.90.224104
- 51. Lubarda V.A., Chen M.C. // J. Mech. Mater. Struct. 2008. V. 3. № 1. P. 153.https://doi.org/10.2140/jomms.2008.3.153
- 52. Wei X., Fragneaud B., Marianetti C.A. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2009. V. 80. № 20. P. 205407. https://doi.org/10.1103/PhysRevB.80.205407
- 53. Cadelano E., Palla P.L., Giordano S. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2010. V. 82. № 23. P. 235414. https://doi.org/10.1103/PhysRevB.82.235414
- 54. Kudin K.N., Scuseria G.E., Yakobson B.I. // Phys. Rev. B: Condens. Matter Mater. Phys. 2001. V. 64. № 23. P. 235406. https://doi.org/10.1103/PhysRevB.64.235406
- 55. Lee C., Wei X., Kysar J.W. et al. // Science. 2008. V. 321. № 5887. P. 385. https://doi.org/10.1126/science.1157996
- 56. Falin A., Cai Q., Santos E.J.G. et al. // Nat. Commun. 2017. V. 8. № 1. P. 15815. https://doi.org/10.1038/ncomms15815
- 57. Li J., Wei Y., Fan X. et al. // J. Mater. Chem. C. 2016. V. 4. № 40. P. 9613. https://doi.org/10.1039/c6tc03710k
- 58. Li J., Fan X., Wei Y. et al. // J. Mater. Chem. C. 2016. V. 4. № 46. P. 10866. https://doi.org/10.1039/c6tc03584a
- 59. Yan L., Bo T., Zhang W. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 28. P. 15327. https://doi.org/10.1039/c9cp02727k
- 60. Bertolazzi S., Brivio J., Kis A. // ACS Nano. 2011. V. 5. № 12. P. 9703. https://doi.org/10.1021/nn203879f
- 61. Cooper R.C., Lee C., Marianetti C.A. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2013. V. 87. № 3. P. 035423. https://doi.org/10.1103/PhysRevB.87.035423
- 62. Şahin H., Cahangirov S., Topsakal M. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2009. V. 80. № 15. P. 155453. https://doi.org/10.1103/PhysRevB.80.155453
- 63. Tang J.-P., Xiao W.-Z., Wang L.-L. // Mater. Sci. Eng., B. 2018. V. 228. P. 206. https://doi.org/10.1016/j.mseb.2017.12.003
- 64. Yang L.-M., Bačić V., Popov I.A. et al. // J. Am. Chem. Soc. 2015. V. 137. № 7. P. 2757. https://doi.org/10.1021/ja513209c
- 65. Drummond N.D., Zólyomi V., Fal’ko V.I. // Phys. Rev. B: Condens. Matter Mater. Phys. 2012. V. 85. № 7. P. 075423. https://doi.org/10.1103/PhysRevB.85.075423
- 66. Dávila M.E., Xian L., Cahangirov S. et al. // New J. Phys. 2014. V. 16. № 9. P. 095002. https://doi.org/10.1088/1367-2630/16/9/095002
- 67. Ding J., Xu M., Guan P.F. et al. // J. Chem. Phys. 2014. V. 140. № 6. P. 064501. https://doi.org/10.1063/1.4864106
- 68. Sun J., Liu P., Wang M. et al. // Sci. Rep. 2020. V. 10. № 1. P. 3408. https://doi.org/10.1038/s41598-020-60416-5
- 69. Klintenberg M., Lebègue S., Ortiz C. et al. // J. Phys.: Condens. Matter. 2009. V. 21. № 33. P. 335502. https://doi.org/10.1088/0953-8984/21/33/335502
- 70. Peng Q., Ji W., De S. // Comput. Mater. Sci. 2012. V. 56. P. 11. https://doi.org/10.1016/j.commatsci.2011.12.029
- 71. Peng Q., Wen X., De S. // RSC Adv. 2013. V. 3. № 33. P. 13772. https://doi.org/10.1039/c3ra41347k
- 72. Andrew R.C., Mapasha R.E., Ukpong A.M. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2012. V. 85. № 12. P. 125428. https://doi.org/10.1103/PhysRevB.85.125428