- PII
- S3034560XS0044457X25080038-1
- DOI
- 10.7868/S3034560X25080038
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 8
- Pages
- 1004-1013
- Abstract
- A new method for obtaining KCe(PO) ∙ xHO (s. g. I4/amd, a= b= 6.8300(2), c= 17.8488(4) Å, V= 832.63(4) Å, Z= 4) under hydrothermal conditions has been developed. It has been established that the thermolysis of this compound proceeds through three stages of mass loss with the formation of CePO и KPO as intermediate products, which upon further heating form a mixture of CePO and KCe(PO). The calculated values of the sun protection factor and UVA protection factor for KCe(PO) ∙ xHO were 2.1 and 2.0, respectively. In relation to the human keratinocyte cell line (HaCaT), a photoprotective effect of KCe(PO) ∙ xHO was recorded. For the first time, the photoactive properties of KCe(PO) and KCe(PO) ∙ хHO in the decomposition reaction of methylene blue were evaluated. A significant slowdown in the decomposition reaction of an organic dye was demonstrated when using KCe(PO) ∙ хHO.
- Keywords
- фосфаты церия(IV) структура термолиз защита от УФ-излучения солнцезащитный фактор (SPF)
- Date of publication
- 15.02.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 70
References
- 1. Serpone N. // Photochem. Photobiol. Sci. 2021. V. 20. № 2. P. 189. https://doi.org/10.1007/s43630-021-00013-1
- 2. 2. Pols J.C., Williams G.M., Pandeya N. et al. // Cancer Epidemiol. Biomarkers Prev. 2006. V. 15. № 12. P. 2546. https://doi.org/10.1158/1055-9965.EPI-06-0352
- 3. 3. D’Orazio J., Jarrett S., Amaro-Ortiz A. et al. // Int. J. Mol. Sci. 2013. V. 14. № 6. P. 12222. https://doi.org/10.3390/ijms140612222
- 4. 4. Egambaram O.P., Kesavan Pillai S., Ray S.S. // Photochem. Photobiol. 2020. V. 96. № 4. P. 779. https://doi.org/10.1111/php.13208
- 5. 5. Schneider S.L., Lim H.W. // Photodermatol. Photoimmunol. Photomed. 2019. V. 35. № 6. P. 442. https://doi.org/10.1111/phpp.12439
- 6. 6. Serpone N., Dondi D., Albini A. // Inorg. Chim. Acta. 2007. V. 360. № 3. P. 794. https://doi.org/10.1016/j.ica.2005.12.057
- 7. 7. Nery É.M., Martinez R.M., Velasco M.V.R. et al. // J. Cosmet. Dermatol. 2021. V. 20. № 4. P. 1061. https://doi.org/10.1111/jocd.13694
- 8. 8. Smijs T.G., Pavel S. // Nanotechnol. Sci. Appl. 2011. V. 4. P. 95. https://doi.org/10.2147/NSA.S19419
- 9. 9. Lewicka Z.A., Yu W.W., Oliva B.L. et al. // J. Photochem. Photobiol., A: Chem. 2013. V. 263. P. 24. https://doi.org/10.1016/j.jphotochem.2013.04.019
- 10. 10. Onoda H., Tanaka R. // J. Mater. Res. Technol. 2019. V. 8. № 6. P. 5524. https://doi.org/10.1016/j.jmrt.2019.09.020
- 11. 11. Hiromoto S., Inoue M., Taguchi T. et al. // Acta Biomater. 2015. V. 11. P. 520. https://doi.org/10.1016/j.actbio.2014.09.026
- 12. 12. Carella F., Degli Esposti L., Adamiano A. et al. // Materials (Basel). 2021. V. 14. № 21. P. 6398. https://doi.org/10.3390/ma14216398
- 13. 13. Onoda H., Yamaoka K., Charoonsuk T. et al. // J. Aust. Ceram. Soc. 2025. https://doi.org/10.1007/s41779-025-01190-3
- 14. 14. De Lima J.F., Serra O.A. // Dye Pigment. 2013. V. 97. № 2. P. 291. https://doi.org/10.1016/j.dyepig.2012.12.020
- 15. 15. Kurajica S., Brleković F., Keser S. et al. // Molecules. 2025. V. 30. № 2. P. 405. https://doi.org/10.3390/molecules30020405
- 16. 16. Seixas V.C., Serra O.A. // Molecules. 2014. V. 19. № 7. P. 9907. https://doi.org/10.3390/molecules19079907
- 17. 17. Sato T., Yin S. // Phosphorus Res. Bull. 2010. V. 24. P. 43. https://doi.org/10.3363/prb.24.43
- 18. 18. Kozlova T.O., Vasilyeva D.N., Kozlov D.A. et al. // Molecules. 2024. V. 29. № 9. P. 2157. https://doi.org/10.3390/molecules29092157
- 19. 19. Sato T., Sato C., Yin S. // Phosphorus Res. Bull. 2008. V. 22. P. 17. https://doi.org/10.3363/prb.22.17
- 20. 20. Kozlova T.O., Popov A.L., Kolesnik I.V. et al. // J. Mater. Chem. B. 2022. V. 10. № 11. P. 1775. https://doi.org/10.1039/d1tb02604f
- 21. 21. Kozlova T.O., Sheichenko E.D., Vasilyeva D.N. et al. // Nanosyst. Physics, Chem. Math. 2024. V. 15. № 2. P. 215. https://doi.org/10.17586/2220-8054-2024-15-2-215-223
- 22. 22. Bevara S., Mishra K.K., Patwe S.J. et al. // Inorg. Chem. 2017. V. 56. № 6. P. 3335. https://doi.org/10.1021/acs.inorgchem.6b02870
- 23. 23. Xu Y., Feng S., Pang W. // Mater. Lett. 1996. V. 28. № 4–6. P. 499. https://doi.org/10.1016/0167-577X (96)00112-7
- 24. 24. Kozlova T.O., Vasilyeva D.N., Kozlov D.A. et al. // Nanosyst. Phys. Chem. Math. 2023. V. 14. № 1. P. 112. https://doi.org/10.17586/2220-8054-2023-14-1-112-119
- 25. 25. Baranchikov A.E., Kozlova T.O., Istomin S.Y. et al. // ChemistrySelect. 2024. V. 9. № 17. e202401010. https://doi.org/10.1002/slct.202401010
- 26. 26. Shekunova T.O., Istomin S.Y., Mironov A.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 27. P. 3242. https://doi.org/10.1002/ejic.201801182
- 27. 27. Kolesnik I.V., Shcherbakov A.B., Kozlova T.O. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 960. https://doi.org/10.1134/S0036023620070128
- 28. 28. Lutterotti L. // Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. with Mater. Atoms. 2010. V. 268. № 3–4. P. 334. https://doi.org/10.1016/j.nimb.2009.09.053
- 29. 29. Salvado M.A., Pertierra P., Trobajo C. et al. // J. Am. Chem. Soc. 2007. V. 129. № 36. P. 10970. https://doi.org/10.1021/ja0710297
- 30. 30. Torres-Díaz I., Hendley R.S., Mishra A. et al. // Soft Matter. 2022. V. 18. № 6. P. 1319. https://doi.org/10.1039/D1SM01523K
- 31. 31. Kurazhkovskaya V.S., Bykov D.M., Orlova A.I. // J. Struct. Chem. 2004. V. 45. № 6. P. 966. https://doi.org/10.1007/s10947-005-0087-5
- 32. 32. Clavier N., Mesbah A., Szenknect S. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2018. V. 205. P. 85. https://doi.org/10.1016/j.saa.2018.07.016
- 33. 33. Hadrich A., Lautie A., Mhiri T. et al. // Vib. Spectrosc. 2001. V. 26. P. 51. https://doi.org/10.1016/S0924-2031 (01)00100-X
- 34. 34. Nabhan E., Abd-Allah W.M., Ezz-El-Din F.M. // Results Phys. 2017. V. 7. P. 119. https://doi.org/10.1016/j.rinp.2016.12.001
- 35. 35. Ghoneim N.A., Abdelghany A.M., Abo-Naf S.M. et al. // J. Mol. Struct. 2013. V. 1035. P. 209. https://doi.org/10.1016/j.molstruc.2012.11.034
- 36. 36. Santagneli S.H., de Araujo C.C., Strojek W. et al. // J. Phys. Chem. B. 2007. V. 111. № 34. P. 10109. https://doi.org/10.1021/jp072883n
- 37. 37. Bevara S., Achary S.N., Patwe S.J. et al. // Dalton Trans. 2016. V. 45. № 3. P. 980. https://doi.org/10.1039/c5dt03288a
- 38. 38. Szczygiel I. // Thermochim. Acta. 2004. V. 417. № 1. P. 75. https://doi.org/10.1016/j.tca.2004.01.020
- 39. 39. Tronev I. V., Sheichenko E.D., Razvorotneva L.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 3. P. 263. https://doi.org/10.1134/S0036023622602744
- 40. 40. ISO 24443:2012. Determination of sunscreen UVA photoprotection in vitro.
- 41. 41. Rodrigues N.D.N., Stavros V.G. // Sci. Prog. 2018. V. 101. № 1. P. 8. https://doi.org/10.3184/003685018X15166183479666
- 42. 42. Laquerriere P., Grandjean-Laquerriere A., Jallot E. et al. // Biomaterials. 2003. V. 24. № 16. P. 2739. https://doi.org/10.1016/S0142-9612 (03)00089-9
- 43. 43. Sahu D., Kannan G.M., Tailang M. et al. // J. Nanosci. 2016. V. 2016. P. 1. https://doi.org/10.1155/2016/4023852
- 44. 44. Horie M., Nishio K., Fujita K. et al. // Chem. Res. Toxicol. 2009. V. 22. № 3. P. 543. https://doi.org/10.1021/tx800289z
- 45. 45. Kozlova T.O., Popov A.L., Romanov M.V. et al. // Nanosyst. Physics, Chem. Math. 2023. V. 14. № 2. P. 223. https://doi.org/10.17586/2220-8054-2023-14-2-223-230