- PII
- S3034560XS0044457X25080024-1
- DOI
- 10.7868/S3034560X25080024
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 8
- Pages
- 995-1003
- Abstract
- Methods for obtaining hybrid compounds based on layered yttrium hydroxide intercalated with malonate complexes of d-metals (Cr, Fe, Ni, Cu, Zn) and f-metals (Eu, Tb) have been developed. The influence of temperature during anion-exchange reactions and the nature of the intercalated metal cations on the orientation and coordination modes of malonate anions within the interlayer space of yttrium layered hydroxide was established. The content of d- and f-metal cations in the resulting hybrid compounds increases in the following order of intercalated cations: Tb, Ni, Zn, Cu, Cr, Eu, Fe. These results highlight the potential of yttrium layered hydroxide intercalated with malonate anions as a platform for designing novel hybrid materials based on d- and f-metals.
- Keywords
- слоистые гидроксиды РЗЭ малоновая кислота гибридные материалы
- Date of publication
- 11.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 17
References
- 1. Rogez G., Massobrio C., Rabu P. et al. // Chem. Soc. Rev. 2011. V. 40. № 2. P. 1031s://doi.org/10.1039/c0cs00159g
- 2. 2. Oliver S.R. // Chem. Soc. Rev. 2009. V. 38. № 7. P. 1868s://doi.org/10.1039/b710339p
- 3. 3. Swanson C.H., Shaikh H.A., Rogow D.L. et al. // J. Am. Chem. Soc. 2008. V. 130. № 35. P. 11737. https://doi.org/10.1021/ja802420h
- 4. 4. Duan X., Evans D.G. Layered Double Hydroxides. Berlin, Heidelberg: Springer-Verlag, 2006.
- 5. 5. Liang J., Ma R., Sasaki T. // Dalton Trans. 2014. V. 43. № 27. P. 10355s://doi.org/10.1039/C4DT00425F
- 6. 6. Gándara F., Perles J., Snejko N. et al. // Angew. Chem. Int. Ed. 2006. V. 45. № 47. P. 7998s://doi.org/10.1002/anie.200602502
- 7. 7. Liu L., Yu M., Zhang J. et al. // J. Mater. Chem. 2015. V. 3. № 10. P. 2326s://doi.org/10.1039/c4tc02760d
- 8. 8. Liu L., Wang Q., Gao C. et al. // J. Phys. Chem. C. 2014. V. 118. № 26. P. 14511s://doi.org/10.1021/jp502281m
- 9. 9. Yapryntsev A., Abdusatorov B., Yakushev I. et al. // Dalton Trans. 2019. V. 48. № 18. P. 6111s://doi.org/10.1039/C9DT00390H
- 10. 10. Rodina A.A., Yapryntsev A.D., Abdusatorov B.A. et al. // Inorganics. 2022. V. 10. № 12. P. 233. https://doi.org/10.3390/inorganics10120233
- 11. 11. Liu W., Zhang J., Yin X. et al. // Mater. Chem. Phys. 2021. V. 266. № September 2020. P. 124540. https://doi.org/10.1016/j.matchemphys.2021.124540
- 12. 12. Xiang Y., Yu X.-F., He D.-F. et al. // Adv. Funct. Mater. 2011. V. 21. № 22. P. 4388s://doi.org/10.1002/adfm.201101808
- 13. 13. Kim H., Gang B., Jung H. et al. // J. Solid State Chem. 2019. V. 269. № September 2018. P. 233s://doi.org/10.1016/j.jssc.2018.09.037
- 14. 14. Ren Y., Feng J. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 6. P. 6797s://doi.org/10.1021/acsami.9b17371
- 15. 15. Wu M., Li L., Yu X. et al. // J. Biomed. Nanotechnol. 2014. V. 10. № 12. P. 3620s://doi.org/10.1166/jbn.2014.2035
- 16. 6. Gándara F., Puebla E.G., Iglesias M. et al. // Chem. Mater. 2009. V. 21. № 4. P. 655s://doi.org/10.1021/cm8029517
- 17. 17. Jiřičková M., Demel J., Kubát P. et al. // J. Phys. Chem. 2011. V. 115. № 44. P. 21700s://doi.org/10.1021/jp207505n
- 18. 18. Teplonogova M.A., Volostnykh M. V., Yapryntsev A.D. et al. // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 15373. https://doi.org/10.3390/ijms232315373
- 19. 19. Liu Z., Golodukhina S. V., Kameneva S. V. et al. // Nanosyst. Physics, Chem. Math. 2024. V. 15. № 1. P. 104s://doi.org/10.17586/2220-8054-2024-15-1-104-114
- 20. 20. Li J., Li J.-G., Zhu Q. et al. // Mater. Des. 2016. V. 112. P. 207s://doi.org/10.1016/j.matdes.2016.09.055
- 21. 21. Bai M., Wan H., Zhang Y. et al. // Chem. Sci. 2024. P. 16887s://doi.org/10.1039/d4sc02625j
- 22. 22. Yapryntsev A.D., Skogareva L.S., Gol’dt A.E. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 9. P. 1027. https://doi.org/10.1134/S0036023615090211
- 23. 23. Liang J., Ma R., Geng F. et al. // Chem. Mater. 2010. V. 22. № 21. P. 6001s://doi.org/10.1021/cm102236n
- 24. 24. Yoon Y., Lee B.-I., Lee K.S. et al. // Adv. Funct. Mater. 2009. V. 19. № 21. P. 3375. https://doi.org/10.1002/adfm.200901051
- 25. 25. Lee S.-S., Joh C.-H., Byeon S.-H. // Mater. Sci. Eng. B. 2008. V. 151. № 2. P. 163s://doi.org/10.1016/j.mseb.2008.06.027
- 26. 26. Teplonogova M.A., Yapryntsev A.D., Baranchikov A.E. et al. // Inorg. Chem. 2022. V. 61. № 49. P. 19817. https://doi.org/10.1021/acs.inorgchem.2c02950
- 27. 27. Teplonogova M.A., Yapryntsev A.D., Baranchikov A.E. // Micromachines. 2023. V. 14. P. 1791s://doi.org/10.3390/mi14091791
- 28. 28. Lee B. Il, Lee K.S., Lee J.H. et al. // Dalton Trans. 2009. № 14. P. 2490s://doi.org/10.1039/b823172a
- 29. 29. Wu L., Chen G., Li Z. // Small. 2017. V. 13. № 23. P. 1604070s://doi.org/10.1002/smll.201604070
- 30. 30. Zhu Q., Li S., Wang Q. et al. // Nanoscale. 2019. V. 11. № 6. P. 2795s://doi.org/10.1039/c8nr08900k
- 31. 31. Zhu Q., Li S., Jin J. et al. // Chem. — An Asian J. 2018. V. 13. № 23. P. 3664s://doi.org/10.1002/asia.201801447
- 32. 32. Li W., Gu Q., Su F. et al. // Inorg. Chem. 2013. V. 52. № 24. P. 14010s://doi.org/10.1021/ic4017307
- 33. 33. Zhao Z., Lin H., Yang T. et al. // RSC Adv. 2024. V. 14. № 11. P. 7430s://doi.org/10.1039/d3ra07310f
- 34. 34. Shen T., Zhang Y., Liu W. et al. // J. Mater. Chem. C. 2015. V. 3. № 8. P. 1807s://doi.org/10.1039/c4tc02583k
- 35. 35. Rardin R.L., Tolman W.B., Lippard S.J. // New. J. Chem. 1991. V. 15. P. 417.
- 36. 36. Lukashin A. V., Vertegel A.A., Eliseev A.A. et al. // J. Nanoparticle Res. 2003. V. 5. № 5–6. P. 455. https://doi.org/10.1023/B:NANO.0000006087.95385.81
- 37. 37. Hartdegen V., Klapötke T.M., Sproll S.M. // Inorg. Chem. 2009. V. 48. № 19. P. 9549s://doi.org/10.1021/ic901413n
- 38. 38. Li Y., Xu Y., Wang Y. // Chem. — A Eur. J. 2016. V. 22. № 31. P. 10976s://doi.org/10.1002/chem.201601189
- 39. 39. Gutmann N.H., Spiccia L., Turney T.W. // J. Mater. Chem. 2000. V. 10. № 5. P. 1219s://doi.org/10.1039/a909902f
- 40. 40. Xu Z.P., Kurniawan N.D., Bartlett P.F. et al. // Chem. — A Eur. J. 2007. V. 13. № 10. P. 2824s://doi.org/10.1002/chem.200600571
- 41. 41. Lee J.H., Jung D.Y. // Bull. Korean Chem. Soc. 2013. V. 34. № 11. P. 3488s://doi.org/10.5012/bkcs.2013.34.11.3488
- 42. 42. Zhang S., Kano N., Mishima K. et al. // Appl. Sci. 2019. V. 9. № 22. P. 1s://doi.org/10.3390/app9224805
- 43. 43. Tarasov K.A., O’Hare D., Isupov V.P. // Inorg. Chem. 2003. V. 42. № 6. P. 1919s://doi.org/10.1021/ic0203926
- 44. 44. Morais A.F., Silva I.G.N., Lima B.C. et al. // ACS Omega. 2020. V. 5. № 37. P. 23778s://doi.org/10.1021/acsomega.0c02848
- 45. 45. Sarakha L., Forano C., Boutinaud P. // Opt. Mater. (Amst). 2009. V. 31. № 3. P. 562s://doi.org/10.1016/j.optmat.2007.10.018
- 46. 46. Ma J., Yan B. // Dye. Pigment. 2018. V. 153. P. 266. https://doi.org/10.1016/j.dyepig.2018.02.017
- 47. 47. Tsyganok A.I., Tsunoda T., Hamakawa S. et al. // J. Catal. 2003. V. 213. № 2. P. 191s://doi.org/10.1016/S0021-9517(02)00047-7
- 48. 48. Chang Z., Evans D., Duan X. et al. // J. Phys. Chem. Solids. 2006. V. 67. № 5–6. P. 1054s://doi.org/10.1016/j.jpcs.2006.01.025
- 49. 49. Wu G., Wang L., Yang L. et al. // Eur. J. Inorg. Chem. 2007. № 6. P. 799s://doi.org/10.1002/ejic.200600946
- 50. 50. Li C., Wang L., Evans D.G. et al. // Ind. Eng. Chem. Res. 2009. V. 48. № 4. P. 2162s://doi.org/10.1021/ie800342u
- 51. 51. Pasán J., Delgado F.S., Rodríguez-Martín Y. et al. // Polyhedron. 2003. V. 22. № 14–17. P. 2143. https://doi.org/10.1016/S0277-5387 (03)00203-1
- 52. 52. Dobrokhotova Z.V., Gogoleva N.V., ZorinaTikhonova E.N. et al. // Eur. J. Inorg. Chem. 2015. V. 2015. № 19. P. 3116s://doi.org/10.1002/ejic.201500243
- 53. 53. Bazhina E.S., Kiskin M.A., Korlyukov A.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 43. P. 4116. https://doi.org/10.1002/ejic.202000630
- 54. 54. Zauzolkova N., Dobrokhotova Z., Lermontov A. et al. // J. Solid State Chem. 2013. V. 197. P. 379. https://doi.org/10.1016/j.jssc.2012.09.014
- 55. 55. Mcintyre L.J., Jackson L.K., Fogg A.M. // Chem. Mater. 2008. V. 20. № 1. P. 335s://doi.org/10.1021/cm7019284
- 56. 56. Gutmann N., Müller B., Tiller H.J. // J. Solid State Chem. 1995. V. 119. № 2. P. 331s://doi.org/10.1016/0022-4596(95)80049-U
- 57. 57. Geng F., Matsushita Y., Ma R. et al. // Inorg. Chem. 2009. V. 48. № 14. P. 6724s://doi.org/10.1021/ic900669p
- 58. 58. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629s://doi.org/10.1070/RCR4920
- 59. 59. Hindocha S.A., McIntyre L.J., Fogg A.M. // J. Solid State Chem. 2009. V. 182. № 5. P. 1070s://doi.org/10.1016/j.jssc.2009.01.039
- 60. 60. Serezhkin V.N., Medvedkov Y.A., Serezhkina L.B. et al. // Russ. J. Phys. Chem. A. 2015. V. 89. № 6. P. 1018. https://doi.org/10.1134/S0036024415060254
- 61. 61. Shao B., Feng P., Wang X. et al. // J. Phys. Chem. C. 2019. V. 123. № 12. P. 7467s://doi.org/10.1021/acs.jpcc.9b00888
- 62. 62. Yapryntsev A.D., Baranchikov A.E., Skogareva L.S. et al. // Cryst. Eng. Comm. 2015. V. 17. № 13. P. 2667. https://doi.org/10.1039/C4CE02303J
- 63. 63. Muraishi K. // Thermochim. Acta. 1990. V. 164. P. 401. https://doi.org/10.1016/0040-6031 (90)80455-8
- 64. 64. Caires F.J., Lima L.S., Carvalho C.T. et al. // Thermochim. Acta. 2010. V. 497. № 1–2. P. 35. https://doi.org/10.1016/j.tca.2009.08.013
- 65. 65. Sheichenko E.D., Yapryntsev A.D., Rodina A.A. et al. // Russ. J. Inorg. Chem. 2023. https://doi.org/10.1134/S0036023622602082
- 66. 66. Rodríguez-Martín Y., Sanchiz J., Ruiz-Pérez C. et al. // Cryst. Eng. Comm. 2002. V. 4. № 107. P. 631. https://doi.org/10.1039/B206728E
- 67. 67. Nakamoto K. // Applications in Coordination Chemistry, in: Infrared Raman Spectra Inorg. Coord. Compd., John Wiley & Sons, Inc., 2008: pp. 1–273. https://doi.org/10.1002/9780470405888.ch1
- 68. 68. Henrist C., Traina K., Hubert C. et al. // J. Cryst. Growth. 2003. V. 254. № 1–2. P. 176s://doi.org/10.1016/S0022-0248(03)01145-X
- 69. 69. Gordeeva A., Hsu Y.-J., Jenei I.Z. et al. // ACS Omega. 2020. V. 5. № 28. P. 17617s://doi.org/10.1021/acsomega.0c02075