RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Thermal analysis of the LiCl–LiBr–Li2SO4 system

PII
S3034560XS0044457X25060107-1
DOI
10.7868/S3034560X25060107
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 6
Pages
821-828
Abstract
The LiCl–LiBr–Li2SO4 system was studied by differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Analysis of the phase complex revealed that the liquidus surface of the system consists of Li2SO4 crystallization fields and a continuous series of LiClxBr1–x solid solutions. The composition of the minimum point M 457 is determined, in eq. %: LiCl – 18; LiBr – 42; Li2SO4 – 40. The crystallization temperature is 457°C, and the specific enthalpy of the phase transition is 248.1 ± 7.5 J/g. To identify phase reactions in the LiCl–LiBr–Li2SO4 system, a 3D spatial model was constructed and a separable model of the crystallization volumes of the system phases was modeled, and also, as a demonstration of the possibilities of using a 3D model, a diagram of the material balance of equilibrium coexisting phases was constructed for an arbitrarily selected figurative point of the system under study. To build the model in the COMPAS-3D program, data on melting temperatures and eutectic compositions of smaller–dimensional faceted elements were used, as well as on the polythermal sections of the three–component LiCl–LiBr–Li2SO4 system experimentally studied in the work.
Keywords
трехкомпонентная система 3D-моделирование изотермические разрезы фазовые реакции твердые растворы
Date of publication
16.06.2025
Year of publication
2025
Number of purchasers
0
Views
43

References

  1. 1. Гаркушин И.К., Бурчаков А.В., Емельянова У.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 950. https://doi.org/10.31857/S0044457X20070089
  2. 2. Фролов Е.И., Губанова Т.В. // Журн. неорган. химии. 2017. Т. 62. № 11. С. 1521. https://doi.org/10.7868/S0044457X17110150
  3. 3. Гаркушин И.К., Фролов Е.И., Сырова В.И. // Журн. неорган. химии. 2018. Т. 63. № 5. С. 640. https://doi.org/10.7868/S0044457X18050173
  4. 4. Сырова В.И., Фролов Е.И., Гаркушин И.К. // Журн. неорган. химии. 2017. Т. 62. № 3. С. 381. https://doi.org/10.7868/S0044457X17030187
  5. 5. Вердиев Н.Н., Вердиева З.Н., Алхасов А.Б. и др. // Междунар. науч. журн. Альтернативная энергетика и экология. 2021. № 4–6. С. 21. https://doi.org/10.15518/isjaee.2021.04-06.021-031
  6. 6. Степанов В.П. // Теплофизика высоких температур. 2019. Т. 57. № 3. С. 371. https://doi.org/10.1134/S0040364419030189
  7. 7. Воробьева В.П., Зеленая А.Э., Луцык В.И. // Журн. неорган. химии. 2021. Т. 66. № 6. С. 798. https://doi.org/10.31857/S0044457X21060222
  8. 8. Воробьева В.П., Зеленая А.Э., Луцык В.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1626. https://doi.org/10.31857/S0044457X23600780
  9. 9. Закирьянов Д.О., Ткачев Н.К. // Теплофизика высоких температур. 2020. Т. 58. № 1. С. 51. https://doi.org/10.31857/S0040364420010238
  10. 10. Витвицкий А.И. // Теплофизика высоких температур. 2019. Т. 57. № 5. С. 685. https://doi.org/10.1134/S004036441905020X
  11. 11. Посыпайко В.И., Алексеева Е.А., Васина Н.А. Диаграммы плавкости солевых систем: справочник. Ч. III. Двойные системы с общим катионом. М.: Металлургия, 1977. Т. 8. 208 с.
  12. 12. База данных. Термические константы веществ. Ин-т теплофизики экстремальных состояний РАН Объединенного ин-та высоких температур РАН. Химический факультет МГУ им. М.В. Ломоносова. [Электронный ресурс] http://www. chem.msu.ru/cgi-bin/tkv.pl. show=welcome. html
  13. 13. Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: справочник. Под ред. Лидина Р.А. Изд. 3-е, перераб. и доп. М.: Дрофа, 2008. 685 с.
  14. 14. Уэндландт У. Термические методы анализа. М.: Мир, 1978. 528 с.
  15. 15. Егунов В.П. Введение в термический анализ. Самара, 1996. 270 с.
  16. 16. Wagner M. Thermal Analysis in Practice: Fundamental Aspects. Hanser Publications, 2018. 158 p.
  17. 17. NETZSCH Proteus Thermal Analysis v.4.8.1. NETZSCH-Gerätebau – Bayern, Germany. 2005.
  18. 18. Космынин А.С., Трунин А.С. Оптимизация экспериментального исследования гетерогенных многокомпонентных систем. Самара: Сам. ГТУ, 2007. 160 с.
  19. 19. Вердиева З.Н., Бурчаков А.В., Вердиев Н.Н. и др. // Вестн. Тверского. гос. ун-та. 2019. № 3. С. 31. https://doi.org/10.26456/vtchem2019.3.4
  20. 20. Бурчаков А.В., Гаркушин И.К., Милов С.Н. и др. // Бутлеров. сообщ. 2019. Т. 60. № 10. С. 124.
  21. 21. Основы проектирования в КОМПАС-3D v17. 2-е изд. / Под ред. Азанова М.И. М.: ДМК Пресс, 2019. 232 с.
  22. 22. Палатник Л.С., Ландау А.И. Фазовые равновесия в многокомпонентных системах: монография. Харьков: Изд-во Харьковского ордена Красного Знамени гос. ун-та им. А.М. Горького, 1961. 405 с.
  23. 23. Ильин К.К., Чепурина З.В., Черкасов Д.Г. // Изв. Саратовского ун-та. Сер. Химия. Биология. Экология. 2014. Т. 14. № 2. С. 26. https://doi.org/10.18500/1816-9775-2014-14-2-26-32
  24. 24. Гаркушин И.К., Губанова Т.В., Фролов Е.И. и др. // Журн. неорган. химии. 2015. Т. 60. № 3. С. 374. https://doi.org/10.7868/S0044457X14120095
  25. 25. Вердиев Н.Н., Гаркушин И.К., Вердиева З.Н. и др. // Теплофизика высоких температур. 2021. Т. 59. № 1. С. 82. https://doi.org/10.31857/S0040364421010166
  26. 26. Вердиев Н.Н., Гаркушин И.К., Бурчаков А.В. и др. // Неорган. материалы. 2020. Т. 56. № 11. С. 1243. https://doi.org/10.31857/S0002337X20110159
  27. 27. Дибиров Я.А., Искендеров Э.Г., Исаков С.И. // Неорган. материалы. 2023. Т. 59. № 5. С. 515. https://doi.org/10.31857/S0002337X23050020
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library