RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis and physicochemical properties of magnetic Fe3O4 particles doped with Gd(III)

PII
S3034560XS0044457X25060018-1
DOI
10.7868/S3034560X25060018
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 6
Pages
729-739
Abstract
Magnetic Fe3O4 nanoparticles were synthesized by alkaline precipitation of aqueous solutions of divalent and trivalent iron salts. Synthesis of Fe3xGdxO4 nanoparticles (x = 0.05; 0.1) was performed by adding a calculated amount of Gd(NO3)3 6H2O to the initial solution of iron salt mixture. The phase composition and magnetic properties of the synthesized powders were investigated by X-ray phase analysis, Mössbauer spectroscopy on 57Fe isotope and magnetometry at temperatures T = 7, 20 and 300 K. The investigations confirmed the formation of nanoparticles of non-stehiometric Fe3δO4 magnetite, as well as magnetite doped with Gd3+ ions. The correlation between the average diameter of nanoparticles of the initial Fe3δO4 powder and doped Fe3xGdxO4 powder and the salt used in the synthesis, as well as the concentration of Gd (x), respectively, was revealed.
Keywords
наночастицы Fe<sub>3</sub><sub>−</sub><sub>d</sub>O<sub>4</sub> соли железа гадолиний рентгенофазовый анализ мессбауэровская спектроскопия
Date of publication
16.06.2025
Year of publication
2025
Number of purchasers
0
Views
32

References

  1. 1. Yasemian A.R., Almasi Kashi M., Ramazani A. // Mater. Chem. Phys. 2019. V. 230. P. 9. https://doi.org/10.1016/j.matchemphys.2019.03.032
  2. 2. Koli R.R., Phadatare M.R., Sinha B.B. et al. // J. Taiwan Inst. Chem. Eng. 2019. V. 95. P. 357. https://doi.org/10.1016/j.jtice.2018.07.039
  3. 3. Sharma K.S., Ningthoujam R.S., Dubey A.K. et al. // Sci. Rep. 2018. V. 8. № 1. P. 14766. https://doi.org/10.1038/s41598-018-32934-w
  4. 4. Budnyk A.P., Lastovina T.A., Bugaev A.L. et al. // J. Spectr. 2018. P. 1412563. https://doi.org/10.1155/2018/1412563
  5. 5. Araújo R., Castro A.C.M., Fiúza A. // Mater. Today Proc. 2015. V. 2. P. 315. https://doi.org/10.1016/j.matpr.2015.04.055
  6. 6. Jiang B., Lian L., Xing Y. et al. // Environ. Sci. Pollut. Res. 2018. V. 25. P. 30863. https://doi.org/10.1007/s11356-018-3095-7
  7. 7. Bagbi Y., Sarswat A., Mohan D. et al. // Sci. Rep. 2017. V. 7. №1. P. 7672. https://doi.org/10.1038/s41598-017-03380-x
  8. 8. Li H.Q., Liu F., Zhang B.J. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1681. https://doi.org/10.1134/S0036023623601216
  9. 9. Mojtahedi M.M., Abaee M.S., Rajabi A. et al. // J. Mol. Catal. Chem. 2012. V. 361. P. 68. https://doi.org/10.1016/j.molcata.2012.05.004
  10. 10. Zhang H., Malik V., Mallapragada S. et al. // J. Magn. Magn. Mater. 2017. V. 423. P. 386. https://doi.org/10.1016/j.jmmm.2016.10.005
  11. 11. Jesus A.C.B., Silva T.R., Almeida R.V. et al. // Ceram. Int. 2020. V. 46. № 8. P. 11149. https://doi.org/10.1016/j.ceramint.2020.01.135
  12. 12. Xu R., Zhang J., Liu Y. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 33. P. 36917. https://pubs.acs.org/doi/10.1021/acsami.0c09952
  13. 13. Zhang G., Zhang L., Si Y. et al. // Chem. Eng. J. 2020. V. 388. P. 124269. https://doi.org/10.1016/j.cej.2020.124269
  14. 14. Li J., Li X., Gong S. et al. // Nano Lett. 2020. V. 20. № 7. P. 4842. https://doi.org/10.1021/acs.nanolett.0c00817
  15. 15. Peng H., Cui B., Wang Y. // Mater. Res. Bull. 2013. V. 48. № 5. P. 1767. https://doi.org/10.1016/j.materresbull.2013.01.001
  16. 16. Kahil H., Faramawy A., El-Sayed H. et al. // Crystals. 2021. V. 11. № 10. P. 1153. https://doi.org/10.3390/cryst11101153
  17. 17. Palihawadana-Arachchige M., Naik V.M., Vaishnava P.P. et al. / Nanostructured Materials – Fabrication to Applications. BoD: Books on Demand (2017). https://doi.org/10.5772/intechopen.68219
  18. 18. Jain R., Luthra V., Arora M. et al. // Adv. Sci. Eng. Med. 2019. V. 11. № 1–2. P. 88. https://doi.org/10.1166/asem.2019.2313
  19. 19. Dhillon G., Kumar P., Sharma R. et al. // J. Mater. Sci. Mater. Electron. 2021. V. 32. № 17. P. 22387. https://doi.org/10.1007/s10854-021-06725-5
  20. 20. Janani V., Induja S., Jaison D. et al. // Ceram. Int. 2021. V. 47. № 22. P. 31399. https://doi.org/10.1016/j.ceramint.2021.08.015
  21. 21. Massart R. // IEEE Trans. Magn. 1981. V. 17. № 2. P. 1247. https://doi.org/10.1109/TMAG.1981.1061188
  22. 22. Zhu N., Ji H., Yu P. et al. // Nanomaterials. 2018. V. 8. № 10. P. 810. https://doi.org/10.3390/nano8100810
  23. 23. Lagarec K., Rancourt D.G. // Recoil-Mössbauer spectral analysis software for Windows. University of Ottawa, Ottawa, ON 43 (1998).
  24. 24. Rancourt D.G., Ping J.Y. // Nucl. Instrum. Methods Phys. Res., Sect. B. 1991. V. 58. № 1. P. 85. https://doi.org/10.1016/0168-583X (91)95681-3
  25. 25. Powder Diffraction File (PDF). The International Centre for Diffraction Data.
  26. 26. Williamson G.K., Hall W.H. // Acta Metall. 1953. V. 1. № 1. P. 22. https://doi.org/10.1016/0001-6160 (53)90006-6
  27. 27. Johnson C.E., Johnson J.A., Hah H.Y. et al. // Hyperfine Interact. 2016. V. 237. P. 1. https://doi.org/10.1007/s10751-016-1277-6
  28. 28. Kuchma E., Kubrin S., Soldatov A. // Biomedicines. 2018. V. 6. № 3. P. 78. https://doi.org/10.3390/biomedicines6030078
  29. 29. Winsett J., Moilanen A., Paudel K. et al. // SN Appl. Sci. 2019. V. 1. Р. 1. https://doi.org/10.1007/s42452-019-1699-2
  30. 30. Панкратов Д.А., Анучина М.М., Спиридонов Ф.М. и др. // Кристаллография. 2020. Т. 65. № 3. С. 393. https://doi.org/10.31857/S0023476120030248 Pankratov D.A., Anuchina M.M., Spiridonov F.M. et al. // Crystallogr. Rep. 2020. V. 65. № 3. P. 393. https://doi.org/10.1134/s1063774520030244
  31. 31. Martinez-Boubeta C., Simeonidis K., Makridis A. et al. // Sci. Rep. 2013. V. 3. Р. 1652. https://doi.org/10.1038/srep01652
  32. 32. Zhu W., Winterstein J., Maimon I. et al. // J. Phys. Chem. C. 2016. V. 120. № 27. P. 14854. https://doi.org/10.1021/acs.jpcc.6b02033
  33. 33. Persson K. // Materials data on fe3o4 (sg: 227) by materials project. United States (2015). https://doi.org/10.17188/1194194
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library