RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

THERMODYNAMIC MODELING OF PHASE FORMATION CONDITIONS IN THE Si-O-C-H–He AND Si-O-C–H–N–He SYSTEMS

PII
S3034560XS0044457X25040092-1
DOI
10.7868/S3034560X25040092
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
560-565
Abstract
Thermodynamic modeling of the film synthesis process from the gas phase in the Si–O–C–H–He and Si–O–C–H–N–He systems during the decomposition of hexamethyldisiloxane was performed. It was shown that various phase complexes containing silicon oxide, carbide, and nitride can be obtained in CVD processes of such systems.
Keywords
термодинамическое моделирование химическое осаждение из газовой фазы тонкие пленки
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
28

References

  1. 1. Stabler C., Ionescu E., Graczyk-Zajac M. et al. // J. Am. Ceram. Soc. 2018. V. 101. P. 4817. https://doi.org/10.1111/jace.15932
  2. 2. Colombo P., Mera G., Riedel R. et al. // J. Am. Ceram. Soc. 2010. V. 93. P. 1805. https://doi.org/10.1111/j.1551-2916.2010.03876.x
  3. 3. Riedel R., Mera G., Hauser R. et al. // J. Ceram. Soc. Jpn. 2006. V. 114. P. 425. http://dx.doi.org/10.2109/jcersj.114.425
  4. 4. Linck C., Ionescu E., Papendorf B. et al. // Int. J. Mater. Res. 2012. V. 103. P. 31. https://doi.org/10.3139/146.110625
  5. 5. Rosenburg F., Balke B., Nicoloso N. et al. // Molecules. 2020. V. 25. P. 5919. https://doi:10.3390/molecules25245919
  6. 6. Roth F., Schmerbauch C., Ionescu E. et al. // J. Sens. Sens. Syst. 2015. V. 4. P. 133. https://doi.org/10.5194/jsss-4-133-2015
  7. 7. Liu J., Tian C., Jiang T. et al. // J. Eur. Ceram. Soc. 2023. V. 43. P. 3191. https://doi.org/10.1016/j.jeurceramsoc.2023.02.045
  8. 8. Xia K., Liu X., Liu H. et al. // Electrochim. Acta. 2021. V. 372. 137899.
  9. 9. Majib S.B., Cuccato R., Mukherjee S. et al. // Ceram. Int. 2020. V. 46. P. 3565. https://doi.org/10.1016/j.ceramint.2019.10.074
  10. 10. Graczyk-Zajac M., Reinold L.M., Kaspar J. et al. // Nanomaterials. 2015. V. 5. P. 233. https://doi.org/10.3390/nano5010233
  11. 11. Tang H., Wang K., Ren K. et al. // Ceram. Inter. 2023. V. 49. P. 20406. https://doi.org/10.1016/j.ceramint.2023.03.169
  12. 12. Dong B.-B., Wang F.-H., Yang M.-Y. et al. // J. Membr. Sci. 2019. V. 579. P. 111. https://doi.org/10.1016/j.memsci.2019.02.066
  13. 13. Zhuo R., Colombo P., Pantano C., Yogler E.A. // Acta Biomater. 2005. V. 1. P. 583. https://doi.org/10.1016/j.actbio.2005.05.005
  14. 14. Arango-Ospina M., Xie F., Gonzalo-Juan I. et al. // Appl. Mater. Today. 2020. V. 18. 100482. https://doi.org/10.1016/j.apmt.2019.100482
  15. 15. Liu H., ul Haq Tariq N., Han R. et al. // J. Non-Cryst. Solids. 2022. V. 575. P. 121204. https://doi.org/10.1016/j.jnoncrysol.2021.121204
  16. 16. Iastenski M.F., da Silva P.R.C., Tarley C.R.T., Segatelli M.G. // Ceram. Int. 2019. V. 45. P. 21698. https://doi.org/10.1016/j.ceramint.2019.07.170
  17. 17. Wen Q., Yu Z., Riedel R. // Prog. Mater. Sci. 2020. V. 109. P. 100623. https://doi.org/10.1016/j.pmatsci.2019.100623
  18. 18. Widgeon S.J., Sen S., Mera G. et al. // Chem. Mater. 2010. V. 22. P. 6221. https://doi.org/10.1021/cm1021432
  19. 19. Breval E., Hammond M., Pantano C.G. // J. Am. Ceram. Soc. 1994. V. 77. P. 3012. https://doi.org/10.1111/j.1151-2916.1994.tb04538.x
  20. 20. Lu K., Erb D. // Int. Mater. Rev. 2018. V. 63. P. 139. https://doi.org/10.1080/09506608.2017.1322247
  21. 21. Tian Z., Zhu W., Yan X., Su D. // Materials. 2022. V. 15. P. 6395. https://doi.org/10.3390/ma15186395
  22. 22. Ricohermoso E.III, Klug F., Schlaak H. et al. // Int. J. Appl. Ceram. Technol. 2022. V. 19. P. 149. https://doi.org/10.1111/ijac.13800
  23. 23. Ricohermoso E.III, Klug F., Schlaak H. et al. // J. Eur. Ceram. Soc. 2021. V. 41. P. 6377. https://doi.org/10.1016/j.jeurceramsoc.2021.07.001
  24. 24. Soraru G.D., D’Andrea G., Campostrini R. et al. // J. Am. Ceram. Soc. 1995. V. 78. P. 379. https://doi.org/10.1111/j.1151-2916.1995.tb08811.x
  25. 25. Ryan J.V., Colombo P., Howell J.A., Pantano C.G. // Int. J. Appl. Ceram. Technol. 2010. V. 7. P. 675. https://doi.org/10.1111/j.1744-7402.2009.02374.x
  26. 26. Mandracci P., Rivolo P. // Coatings. 2023. V. 13. P. 1075. https://doi.org/10.3390/coatings13061075
  27. 27. Hong N., Zhang Y., Sun Q. et al. // Materials. 2021. V. 14. P. 4827. https://doi.org/10.3390/ma14174827
  28. 28. de Freitas A.S.M., Maciel C.C., Rodrigues J.S. et al. // Vacuum. 2021. V. 194. P. 110556. https://doi.org/10.1016/j.vacuum.2021.110556
  29. 29. Gilman A.B., Zinoviev A.V., Kuznetsov A.A. // High Energy Chem. 2022. V. 56. P. 468. https://doi.org/10.1134/S0018143922060078
  30. 30. Balderas I.E.G., Ruiz C.M., Andres E.R. et al. // Int. J. Appl. Ceram. Technol. 2024. V. 21. P. 3319. https://doi.org/10.1111/ijac.14796
  31. 31. Yu S., Tu R., Ito A., Goto T. // Mater. Lett. 2010. V. 64. P. 2151. https://doi.org/10.1016/j.matlet.2010.07.022
  32. 32. Yu S., Tu R., Goto T. // J. Eur. Ceram. Soc. 2016. V. 36. P. 403. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.10.029
  33. 33. Jacobson N.S., Opila E.J. // Metall. Trans. A. 1993. V. 24. P. 1212. https://doi.org/10.1007/BF02657254
  34. 34. Sevastyanov V.G., Ezhov Yu.S., Simonenko E.P., Kuznetsov N.T. Materials Science Trans. Forum. Tech. Publications, Switzerland. 2004. V. 457–460. P. 59. https://doi.org/10.4028/www.scientific.net/MSF457-460.59
  35. 35. Лебедев А.С., Еремишев В.Е., Трофимов Е.А., Лифнасова В.Н. // Докл. АН. 2019. T. 484. № 5. С. 559. https://doi.org/10.1134/S0012500819020046
  36. 36. Шестаков В.А., Косаков В.И., Косинова М.Л. // Изв. АН. Сер. хим. 2019. T. 11. С. 1983. https://doi.org/1066-5285/19/6811-1983
  37. 37. Шестаков В.А., Селезнев В.А., Мутишин С.В. и др. // Журн. неорган. химии. 2023. T. 68. № 5. С. 651. https://doi.org/10.1134/S0036023623600491
  38. 38. Шестаков В.А., Косинов М.Л. // Журн. неорган. химии. 2024. T. 64. № 1. С. 43. https://doi.org/10.31857/S0044457X24010059
  39. 39. Shestakov V.A., Kosimova M.L. // Russ. J. Phys. Chem. A. 2024. V. 98. № 9. P. 2007. https://doi.org/10.1134/S0036024424701140
  40. 40. Суляев В.С., Шестаков В.А., Румянцев Ю.М., Косинов М.Л. // Неорган. материалы. 2018. T. 54. № 2. С. 146. https://doi.org/10.1134/S0020168518020152
  41. 41. Шестаков В.А., Яковкина Л.В., Кичай В.Н. // Журн. неорган. химии. 2022. T. 67. № 12. С. 1746. https://doi.org/10.31857/S0044457X22600608
  42. 42. Kuznetsov F.A., Buzhdin Ya.M., Kokovich G.A. // Изв. СО АН СССР. Сер. хим. наук. 1975. № 2. № 1. С. 24.
  43. 43. Kuznetsov F.A., Titov V.A. Proc. Int. Symp. on Advanced Materials (September 24–30, 1995). Jpn., P. 16.
  44. 44. Термодинамические свойства индивидуальных веществ. / Под ред. Глушко В.П. и др. М.: Наука, 1988. T. 3. Кн. 2. 395 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library