RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

SYNTHESIS OF NANO-SIZED SnO BY DIRECT CHEMICAL PRECIPITATION USING TIN(II) CHLORIDE

PII
S3034560XS0044457X25040032-1
DOI
10.7868/S3034560X25040032
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
502-510
Abstract
The process of synthesizing nano-sized SnO by direct chemical precipitation using tin(II) chloride and hydrogen peroxide has been investigated. The thermal behavior of the obtained powders was studied using simultaneous thermal analysis (TGA/DSC). The impact of HO concentration in the reaction system on the set of functional groups in the materials was demonstrated using infrared spectroscopy, while X-ray diffraction analysis (XRD) was utilized to examine the crystalline structure of the powders, including the thermal transformation of tin(II) oxyhydroxide. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to show the effect of the reaction system composition on the size of primary particles and the agglomerates formed. In particular, it was established that with an increase of HO concentration, both the size of the primary particles and the agglomerates decrease. The roughness of the films formed from the obtained nanopowders was studied using atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) was used to construct surface potential distribution maps for the obtained materials and to evaluate the electron work function from their surface.
Keywords
диоксид олова оксид олова(IV) оксогидроксид олова хлорид олова(II) химическое осаждение нанопорошок пероксид водорода
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. White M.E., Bierwagen O., Tsai M.Y. et al. // J. Appl. Phys. 2009. V. 106. № 9. P. 93704. https://doi.org/10.1063/1.3254241
  2. 2. Li Z., Graziosi P., Neophytou N. // Crystals (Basel). 2022. V. 12. № 11. P. 1591. https://doi.org/10.3390/cryst12111591
  3. 3. Korotkov R.Y., Farran A.J.E., Culp T. et al. // J. Appl. Phys. 2004. V. 96. № 11. P. 6445. https://doi.org/10.1063/1.1805722
  4. 4. Mun H., Yang H., Park J. et al. // APL Mater. 2015. V. 3. № 7. P. 76107. https://doi.org/10.1063/1.4927470
  5. 5. Göpel W., Schierbaum K.D. // Sens. Actuators, B: Chem. 1995. V. 26. № 1–3. P. 1. https://doi.org/10.1016/0925-4005 (94)01546-T
  6. 6. Chopra K.L., Major S., Pandya D.K. // Thin Solid Films. 1983. V. 102. № 1. P. 1. https://doi.org/10.1016/0040-6090 (83)90256-0
  7. 7. Zhou D., Chekamukov A.A., Semenenko D.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1488. https://doi.org/10.1134/S0036023622090029
  8. 8. Bhattacharjee A., Ahmaruzzaman M., Sinha T. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2015. V. 136. P. 751. https://doi.org/10.1016/j.saa.2014.09.092
  9. 9. Liu A., Zhu M., Dai B. // Appl. Catal., A: Gen. 2019. V. 583. P. 117134. https://doi.org/10.1016/j.apcata.2019.117134
  10. 10. Liu C., Xian H., Jiang Z. et al. // Appl. Catal., B. 2015. V. 176–177. P. 542. https://doi.org/10.1016/j.apcatb.2015.04.042
  11. 11. Tonczer M. // Chemosensors. 2020. V. 9. № 1. P. 2. https://doi.org/10.3390/chemosensors9010002
  12. 12. Zito C.A., Perfecto T.M., Volanti D.P. // Adv. Mater Interfaces. 2017. V. 4. № 22. P. 1700847. https://doi.org/10.1002/admi.201700847
  13. 13. Fisenko N.A., Solomatov I.A., Simonenko N.P. et al. // Sensors. 2022. V. 22. № 24. P. 9800. https://doi.org/10.3390/s22249800
  14. 14. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601703
  15. 15. Krakove U.O., Orel B., Hočevar S. et al. // J. Electrochem Soc. 1997. V. 144. № 10. P. 3398. https://doi.org/10.1149/1.1838025
  16. 16. Olivi P., Pereira E.C., Longo E. et al. // J. Electrochem Soc. 1993. V. 140. № 5. P. L81. https://doi.org/10.1149/1.2221591
  17. 17. Orel B., Lavrenčíč-Stangar U., Kalcher K. // J. Electrochem Soc. 1994. V. 141. № 9. P. L127. https://doi.org/10.1149/1.2055177
  18. 18. Köse H., Karad S., Aydin A.O. et al. // Mater. Sci. Semicond. Process. 2015. V. 38. P. 404. https://doi.org/10.1016/j.mssp.2015.03.028
  19. 19. Gu F., Wang S.F., Lu M.K. et al. // J. Phys. Chem. B. 2004. V. 108. № 24. P. 8119. https://doi.org/10.1021/jp036741e
  20. 20. Aziz M., Saber Abbas S., Wan Baharon W.R. // Mater. Lett. 2013. V. 91. P. 31. https://doi.org/10.1016/j.matlet.2012.09.079
  21. 21. Kang S.-Z., Yang Y., Mu J. // Colloids Surf., A: Physicochem. Eng. Asp. 2007. V. 298. № 3. P. 280. https://doi.org/10.1016/j.colsurfa.2006.11.008
  22. 22. Lupan O., Chow L., Chai G. et al. // Mater. Sci. Eng., B. 2009. V. 157. № 1–3. P. 101. https://doi.org/10.1016/j.mseb.2008.12.035
  23. 23. Chiu H.-C., Yeh C.-S. // J. Phys. Chem. C. 2007. V. 111. № 20. P. 7256. https://doi.org/10.1021/jp0688355
  24. 24. Das S., Kar S., Chaudhuri S. // J. Appl. Phys. 2006. V. 99. № 11. P. 14303. https://doi.org/10.1063/1.2200449
  25. 25. Liu Y., Koep E., Liu M. // Chem. Mater. 2005. V. 17. № 15. P. 3997. https://doi.org/10.1021/cm050451o
  26. 26. Lu Y.M., Jiang J., Becker M. et al. // Vacuum. 2015. V. 122. P. 347. https://doi.org/10.1016/j.vacuum.2015.03.018
  27. 27. Kim K.H., Park C.G. // J. Electrochem. Soc. 1991. V. 138. № 8. P. 2408. https://doi.org/10.1149/1.2085986
  28. 28. Drever R., Legros C., Bérardan D. et al. // Surf. Coat. Technol. 2015. V. 271. P. 234. https://doi.org/10.1016/j.surfcoat.2014.12.008
  29. 29. Acarbag Ö., Suvacı E., Doğan A. // Ceram. Int. 2007. V. 33. № 4. P. 537. https://doi.org/10.1016/j.ceramint.2005.10.024
  30. 30. Ibarguen C.A., Mosquera A., Parra R. et al. // Mater. Chem. Phys. 2007. V. 101. № 2–3. P. 433. https://doi.org/10.1016/j.matchemphys.2006.08.003
  31. 31. Jońca J., Ryzhikov A., Kahn M.L. et al. // Chem. A Eur. J. 2016. V. 22. № 29. P. 10127. https://doi.org/10.1002/chem.201600650
  32. 32. Nejati K. // Cryst. Res. Technol. 2012. V. 47. № 5. P. 567. https://doi.org/10.1002/crat.201100633
  33. 33. Kozlova L.O., Ioni Yu.V., Son A.G. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1744. https://doi.org/10.1134/S0036023623602374
  34. 34. Kozlova L.O., Voroshilov I.L., Ioni Yu.V. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601077
  35. 35. Liu S., Xie M., Li Y. et al. // Chem. Lett. 2009. V. 38. № 6. P. 614. https://doi.org/10.1246/c1.2009.614
  36. 36. Rajan R., Vizhi R.E. // J. Supercond. Nov. Magn. 2017. V. 30. № 11. P. 3199. https://doi.org/10.1007/s10948-017-4118-1
  37. 37. Campo C.M., Rodriguez,J.E., Ramírez,A.E. // Heliyon. 2016. V. 2. № 5. P. E00112. https://doi.org/10.1016/j.heliyon.2016.e00112
  38. 38. Shahanshahi S.Z., Mosivand S. // Appl. Phys. A. 2019. V. 125. № 9. P. 652. https://doi.org/10.1007/s00339-019-2949-2
  39. 39. Chandane W., Gajare S., Kagne R. et al. // Res. Chem. Intermed. 2022. V. 48. № 4. P. 1439. https://doi.org/10.1007/s11164-022-04670-4
  40. 40. Wang Q., Peng C., Du L. et al. // Adv. Mater. Interfaces. 2020. V. 7. № 4. https://doi.org/10.1002/admi.201901866
  41. 41. Gubbala S., Russell H.B., Shah H. et al. // Energy Environ Sci. 2009. V. 2. № 12. P. 1302. https://doi.org/10.1039/b910174h
  42. 42. Fang X., Yan J., Hu L. et al. // Adv. Funct. Mater. 2012. V. 22. № 8. P. 1613. https://doi.org/10.1002/adfm.201102196
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library