RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

CHANGING THE PROPERTIES OF NICKEL-RICH CATHODE MATERIALS UPON CONTACT WITH AMBIENT AIR

PII
S3034560X25100161-1
DOI
10.7868/S3034560X25100161
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 10
Pages
1380-1390
Abstract
Layered oxides with high nickel content are currently the preferred active cathode materials for lithium-ion batteries. However, it is known that the functional properties of cathode materials decrease when they are stored in air due to surface reactions of the cathode material containing residual lithium ions with moisture and carbon dioxide to form lithium hydroxide and carbonate. At long-term storage of the material in contact with atmosphere concentration of residual lithium compounds on the surface of cathode material particles multiply increases that leads to decrease of the electrode materials capacitive properties, in particular, drop of specific discharge capacity by 25% at current density 0.1 C and by 50% at current density 1 C. New methods of regenerating firing of cathode material stored in contact with air are proposed and it is shown that the addition of additional amounts of LiOH allows achieving the highest capacitive characteristics of regenerated materials.
Keywords
литий-ионные аккумуляторы Ni-обогащенные оксиды остаточные литиевые соединения старение материалов
Date of publication
01.10.2025
Year of publication
2025
Number of purchasers
0
Views
60

References

  1. 1. Liu W., Oh P., Liu X. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 15. P. 4440. https://doi.org/10.1002/anie.204409262
  2. 2. Chang L., Wei A., Luo S. et al. // Int. J. Energy Res. 2022. V. 46. № 15. P. 23145. https://doi.org/10.1002/er.8618
  3. 3. Tian X., Guo R., Bai Y. et al. // Batteries. 2023. V. 9. № 6. P. 319. https://doi.org/10.3390/batteries9060319
  4. 4. Savina A.A., Abakumov A.M. // Heliyon. 2023. V. 9. № 12. P. E21881. https://doi.org/10.1016/j.heliyon.2023.e21881
  5. 5. Wu Z., Zhang C., Yuan F. et al. // Nano Energy. 2024. V. 126. P. 109620. https://doi.org/10.1016/j.nanoen.2024.109620
  6. 6. Noh H.-J., Your S., Yoon C.S. et al. // J. Power Sources. 2013. V. 233. P. 121. https://doi.org/10.1016/j.jpowsour.2013.01.063
  7. 7. Zhang N., Li J., Li H. et al. // Chem. Mater. 2018. V. 30. № 24. P. 8852. https://doi.org/10.1021/acs.chemmater.8b03827
  8. 8. Davis K., Demopoulos G.P. // Next Energy. 2024. V. 4. P. 100122. https://doi.org/10.1016/j.nxener.2024.100122
  9. 9. Sun Y., Liao J., Zhang H. et al. // J. Power Sources. 2023. V. 563. P. 232774. https://doi.org/10.1016/j.jpowsour.2023.232774
  10. 10. Печень Л.С., Махонина Е.В., Румянцев А.М. и др. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1522. https://doi.org/10.1134/s0044457x18120176
  11. 11. Медведева А.Е., Махонина Е.В., Каменко M.M. и др. // Журн. неорган. химии. 2024. Т. 69. № 7. С. 986. https://doi.org/10.31857/S0044457X24070067
  12. 12. Hausbrand R., Cherkashinin G., Ehrenberg H. et al. // Mater. Sci. Eng. B. 2015. V. 192. P. 3. https://doi.org/10.1016/j.mseb.2014.11.014
  13. 13. Li T., Yuan X.-Z., Zhang L. et al. // Electrochem. Energy Rev. 2020. V. 3. № 1. P. 43. https://doi.org/10.1007/s41918-019-00053-3
  14. 14. Teichert P., Esheu G.G., Jahnke H. et al. // Batteries. 2020. V. 6. № 1. P. 8. https://doi.org/10.3390/batteries6010008
  15. 15. Kim J., Lee H., Cha H. et al. // Adv. Energy Mater. 2018. V. 8. № 6. P. 1702028. https://doi.org/10.1002/aenm.201702028
  16. 16. Bi Y., Wang T., Liu M. et al. // RSC Adv. 2016. V. 6. № 23. P. 19233. https://doi.org/10.1039/C6RA00648E
  17. 17. Myung S.-T., Maglia F., Park K.-J. et al. // ACS Energy Lett. 2017. V. 2. № 1. P. 196. https://doi.org/10.1021/acsenergylett.6b00594
  18. 18. Meatza I., Landa-Medrano I., Sananes-Israel S. et al. // Batteries. 2022. V. 8. № 8. P. 79. https://doi.org/10.3390/batteries8080079
  19. 19. Atalay S., Sheikh M., Mariani A. et al. // J. Power Sources. 2020. V. 478. P. 229026. https://doi.org/10.1016/j.jpowsour.2020.229026
  20. 20. Steklinger J., Metzger M., Beyer H. et al. // J. Electrochem. Soc. 2019. V. 166. № 12. P. A2322. https://doi.org/10.1149/2.0011912jes
  21. 21. Ly C., Li Z., Ren X. et al. // J. Mater. Chem. A. 2021. V. 9. № 7. P. 3995. https://doi.org/10.1039/D0TA10378K
  22. 22. Mohanty D., Kalnaus S., Meisner R.A. et al. // J. Power Sources. 2013. V. 229. P. 239. https://doi.org/10.1016/j.jpowsour.2012.11.144
  23. 23. Cho D.-H., Jo C.-H., Cho W. et al. // J. Electrochem. Soc. 2014. V. 161. № 6. P. A920. https://doi.org/10.1149/2.042406jes
  24. 24. Mayer J.K., Huttner F., Heck C.A. et al. // J. Electrochem. Soc. 2022. V. 169. № 6. P. 060512. https://doi.org/10.1149/1945-7111/ac7358
  25. 25. Zhang W., Yuan C., Zhu J. et al. // Adv. Energy Mater. 2023. V. 13. № 2. P. 2202993. https://doi.org/10.1002/aenm.202202993
  26. 26. Zhang Y.S., Courtier N.E., Zhang Z. et al. // Adv. Energy Mater. 2022. V. 12. № 2. P. 2102233. https://doi.org/10.1002/aenm.202102233
  27. 27. Lee W., Muhammad S., Kim T. et al. // Adv. Energy Mater. 2018. V. 8. № 4. P. 1701788. https://doi.org/10.1002/aenm.201701788
  28. 28. Nuroldayeva G., Adair D., Bakenov Z. et al. // ACS Omega. 2023. V. 8. № 41. P. 37899. https://doi.org/10.1021/acsomega.3c03245
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library