- PII
- S3034560X25100161-1
- DOI
- 10.7868/S3034560X25100161
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 10
- Pages
- 1380-1390
- Abstract
- Layered oxides with high nickel content are currently the preferred active cathode materials for lithium-ion batteries. However, it is known that the functional properties of cathode materials decrease when they are stored in air due to surface reactions of the cathode material containing residual lithium ions with moisture and carbon dioxide to form lithium hydroxide and carbonate. At long-term storage of the material in contact with atmosphere concentration of residual lithium compounds on the surface of cathode material particles multiply increases that leads to decrease of the electrode materials capacitive properties, in particular, drop of specific discharge capacity by 25% at current density 0.1 C and by 50% at current density 1 C. New methods of regenerating firing of cathode material stored in contact with air are proposed and it is shown that the addition of additional amounts of LiOH allows achieving the highest capacitive characteristics of regenerated materials.
- Keywords
- литий-ионные аккумуляторы Ni-обогащенные оксиды остаточные литиевые соединения старение материалов
- Date of publication
- 01.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 60
References
- 1. Liu W., Oh P., Liu X. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 15. P. 4440. https://doi.org/10.1002/anie.204409262
- 2. Chang L., Wei A., Luo S. et al. // Int. J. Energy Res. 2022. V. 46. № 15. P. 23145. https://doi.org/10.1002/er.8618
- 3. Tian X., Guo R., Bai Y. et al. // Batteries. 2023. V. 9. № 6. P. 319. https://doi.org/10.3390/batteries9060319
- 4. Savina A.A., Abakumov A.M. // Heliyon. 2023. V. 9. № 12. P. E21881. https://doi.org/10.1016/j.heliyon.2023.e21881
- 5. Wu Z., Zhang C., Yuan F. et al. // Nano Energy. 2024. V. 126. P. 109620. https://doi.org/10.1016/j.nanoen.2024.109620
- 6. Noh H.-J., Your S., Yoon C.S. et al. // J. Power Sources. 2013. V. 233. P. 121. https://doi.org/10.1016/j.jpowsour.2013.01.063
- 7. Zhang N., Li J., Li H. et al. // Chem. Mater. 2018. V. 30. № 24. P. 8852. https://doi.org/10.1021/acs.chemmater.8b03827
- 8. Davis K., Demopoulos G.P. // Next Energy. 2024. V. 4. P. 100122. https://doi.org/10.1016/j.nxener.2024.100122
- 9. Sun Y., Liao J., Zhang H. et al. // J. Power Sources. 2023. V. 563. P. 232774. https://doi.org/10.1016/j.jpowsour.2023.232774
- 10. Печень Л.С., Махонина Е.В., Румянцев А.М. и др. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1522. https://doi.org/10.1134/s0044457x18120176
- 11. Медведева А.Е., Махонина Е.В., Каменко M.M. и др. // Журн. неорган. химии. 2024. Т. 69. № 7. С. 986. https://doi.org/10.31857/S0044457X24070067
- 12. Hausbrand R., Cherkashinin G., Ehrenberg H. et al. // Mater. Sci. Eng. B. 2015. V. 192. P. 3. https://doi.org/10.1016/j.mseb.2014.11.014
- 13. Li T., Yuan X.-Z., Zhang L. et al. // Electrochem. Energy Rev. 2020. V. 3. № 1. P. 43. https://doi.org/10.1007/s41918-019-00053-3
- 14. Teichert P., Esheu G.G., Jahnke H. et al. // Batteries. 2020. V. 6. № 1. P. 8. https://doi.org/10.3390/batteries6010008
- 15. Kim J., Lee H., Cha H. et al. // Adv. Energy Mater. 2018. V. 8. № 6. P. 1702028. https://doi.org/10.1002/aenm.201702028
- 16. Bi Y., Wang T., Liu M. et al. // RSC Adv. 2016. V. 6. № 23. P. 19233. https://doi.org/10.1039/C6RA00648E
- 17. Myung S.-T., Maglia F., Park K.-J. et al. // ACS Energy Lett. 2017. V. 2. № 1. P. 196. https://doi.org/10.1021/acsenergylett.6b00594
- 18. Meatza I., Landa-Medrano I., Sananes-Israel S. et al. // Batteries. 2022. V. 8. № 8. P. 79. https://doi.org/10.3390/batteries8080079
- 19. Atalay S., Sheikh M., Mariani A. et al. // J. Power Sources. 2020. V. 478. P. 229026. https://doi.org/10.1016/j.jpowsour.2020.229026
- 20. Steklinger J., Metzger M., Beyer H. et al. // J. Electrochem. Soc. 2019. V. 166. № 12. P. A2322. https://doi.org/10.1149/2.0011912jes
- 21. Ly C., Li Z., Ren X. et al. // J. Mater. Chem. A. 2021. V. 9. № 7. P. 3995. https://doi.org/10.1039/D0TA10378K
- 22. Mohanty D., Kalnaus S., Meisner R.A. et al. // J. Power Sources. 2013. V. 229. P. 239. https://doi.org/10.1016/j.jpowsour.2012.11.144
- 23. Cho D.-H., Jo C.-H., Cho W. et al. // J. Electrochem. Soc. 2014. V. 161. № 6. P. A920. https://doi.org/10.1149/2.042406jes
- 24. Mayer J.K., Huttner F., Heck C.A. et al. // J. Electrochem. Soc. 2022. V. 169. № 6. P. 060512. https://doi.org/10.1149/1945-7111/ac7358
- 25. Zhang W., Yuan C., Zhu J. et al. // Adv. Energy Mater. 2023. V. 13. № 2. P. 2202993. https://doi.org/10.1002/aenm.202202993
- 26. Zhang Y.S., Courtier N.E., Zhang Z. et al. // Adv. Energy Mater. 2022. V. 12. № 2. P. 2102233. https://doi.org/10.1002/aenm.202102233
- 27. Lee W., Muhammad S., Kim T. et al. // Adv. Energy Mater. 2018. V. 8. № 4. P. 1701788. https://doi.org/10.1002/aenm.201701788
- 28. Nuroldayeva G., Adair D., Bakenov Z. et al. // ACS Omega. 2023. V. 8. № 41. P. 37899. https://doi.org/10.1021/acsomega.3c03245