- PII
- S3034560X25100063-1
- DOI
- 10.7868/S3034560X25100063
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 10
- Pages
- 1284-1294
- Abstract
- Powders Mg(PO)·22HO, MgHPO·3HO, NaMg(PO)·xHO, NHMgPO·6HO from different salts, magnesium oxide and phosphoric acid were synthesized by precipitation from solutions at 25°C. Depending on the precursors, products of different compositions were obtained at a specified pH = 9, they were characterized using X-ray diffraction, electron microscopy, and static light scattering. The selection of the sintering mode for the printed sample was carried out using TG and DTA to determine the temperature intervals at which the organic component of the printing suspension was removed. The fundamental possibility of obtaining porous ceramics by 3D printing from magnesium orthophosphate obtained by the solution method with an average size of agglomerates of 28.3 μm and Kelvin structure has been shown. This opens up prospects for the use of magnesium phosphate-based ceramics, in particular magnesium orthophosphate, in regenerative medicine.
- Keywords
- магниевые фосфаты биорезорбируемая керамика аддитивные технологии
- Date of publication
- 01.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 60
References
- 1. Langer R. // Mol. Therapy. 2000. V. 1. № 1. P. 12. https://doi.org/10.1006/mthe.1999.0003
- 2. Laurencin C.T., Ambrosio A.M.A., Borden M.D. et al. // Annu. Rev. Biomed. Eng. 1999. V. 1. P. 19. https://doi.org/10.1146/annurev.bioeng.1.1.19
- 3. Eshraghi S., Das S. // Acta Biomaterialia. 2010. V. 6. P. 2467. https://doi.org/10.1016/j.actbio.2010.02.002
- 4. Kolk A., Handschel J., Drescher W. et al. // J. Cranio-Maxillo-Facial Surgery. 2012. V. 40. P. 706. https://doi.org/10.1016/j.jcms.2012.01.002
- 5. Vorndam E., Moseke C., Gbureck U. // Mater. Res. Soc. 2015. V. 40. P. 127. https://doi.org/10.1557/MRS.2015.326
- 6. Ievlev V.M., Putlyaev V.I., Safronova T.V. et al. // Inorg. Mater. 2015. V. 51. № 13. P. 1297. https://doi.org/10.1134/S0020168515130038
- 7. Ларионов Д.С., Кузина М.А., Евдокимов П.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 309. https://doi.org/10.31857/S0044457X20030071
- 8. Juhasz J.A., Best S.M. // J. Mater. Sci. 2012. V. 47. P. 610. https://doi.org/10.1007/s10853-011-6063-x
- 9. Chernousova S., Epple M. // Adv. Biomater. Devices Medicine. 2014. V. 1. P. 74.
- 10. Vallet-Regl M., González-Calbet J.M. // Prog. Solid State Chem. 2004. V. 32. № 1–2. P. 1. https://doi.org/10.1016/j.progsolidstchem.2004.07.001
- 11. Uskokovic V., Uskokovic D.P. // J. Biomed. Mater. Res., Part B: Appl. Biomater. 2011. V. 96. № 1. P. 152. https://doi.org/10.1002/jbm.b.31746
- 12. Neumann M., Epple M. // Eur. J. Trauma. 2006. V. 32. № 2. P. 125. https://doi.org/10.1007/s00068-006-6044-y
- 13. Tadic D., Epple M. // Biomaterials. 2004. V. 25. № 6. P. 987. https://doi.org/10.1016/S0142-9612 (03)00621-5
- 14. Sader M.S., Legeros R.Z., Soares G.A. // J. Mater. Sci. — Mater. Med. 2009. V. 20. № 2. P. 521. https://doi.org/10.1007/s10856-008-3610-3
- 15. Baker S.B., Worthley L.I. // Critical Care Resuscitation. 2002. V. 4. № 4. P. 301. https://doi.org/10.1016/S1441-2772 (23)01193-6
- 16. Sikder P., Grice C.R., Bhaduri S.B. // Surf. Coat. Technol. 2019. V. 374. P. 276. https://doi.org/10.1016/j.surfcoat.2019.06.007
- 17. Zyman Z., Tkachenko M., Epple M. et al. // Mater. wiss. Werkst. tech. 2006. V. 37. № 6. P. 474. https://doi.org/10.1002/mawe.200600022
- 18. Preobrazhenskiy I.I., Klimashina E.S., Filippov Y.Y. et al. // Inorg. Mater. 2024. V. 60. № 12. P. 1391. https://doi.org/10.1134/S0020168524701620
- 19. Preobrazhenskiy I.I., Deyneko D.V., Murashko A.M. et al. // Mendeleev Commun. 2025. V. 35. № 5. P. 614. https://doi.org/10.71267/mencom.7716
- 20. Taylor A.W., Frazier A.W., Gurney E.L. // Trans. Faraday Soc. 1963. V. 59. P. 1580. https://doi.org/10.1039/TF9635901580
- 21. Brown P.W., Gulick J., Dumm J.Q. // J. Am. Ceram. Soc. 2005. V. 76. P. 1558. https://doi.org/10.1111/J.1151-2916.1993.TB03939.X
- 22. Shpunt S., Belposky A., Shulgina M. // Appl. Chem. 1951. V. 24. P. 439.
- 23. Karageorgiou V., Kaplan D. // Biomaterials. 2005. V. 26. № 27. P. 5474. https://doi.org/10.1016/j.biomaterials.2005.02.002
- 24. Khalaf A.T., Wei Y., Wan J. et al. // Life. 2022. V. 12. № 6. P. 903. https://doi.org/10.3390/life12060903
- 25. Melchels F.P.W., Fejen J., Grijpma D.W. // Biomaterials. 2010. V. 31. № 24. P. 6121. https://doi.org/10.1016/j.biomaterials.2010.04.050
- 26. Thomson W. // Philosophical Magazine Series 5. 1887. V. 24. № 151. P. 503. https://doi.org/10.1080/14786448708628135
- 27. Mestres G., Abdolhosseini M., Bowles W. et al. // Acta Biomater. 2013. V. 9. № 9. P. 8384. https://doi.org/10.1016/j.actbio.2013.05.032
- 28. Hongyan M., Bwan X. // Mater. Des. 2017. V. 118. P. 81. https://doi.org/10.1016/j.matdes.2017.01.012
- 29. Андрианова Е.Н., Демидова Е.Л., Алешин В.А. Неорганическая химия. Практикум / Под ред. Шевелькова А.В., Лаборатория знаний, Москва, 2021. 478 с.