RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF NANOSTRUCTURED ZnCrO MATERIALS BASED ON CARBON FIBER FOR SUPERCAPACITORS

PII
S3034560X25100053-1
DOI
10.7868/S3034560X25100053
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 10
Pages
1269-1283
Abstract
Promising energy storage materials based on ZnCrO spinel, synthesized on carbon fiber matrices, remain insufficiently studied in the context of their application in electrochemical supercapacitors. In the present study, the synthesis of these materials was carried out using direct precipitation methods, sol-gel synthesis, and hydrothermal treatment followed by thermal processing. The main focus was on a comprehensive investigation of the morphology, phase composition, and electrochemical characteristics of the samples. Analysis was conducted using X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Samples obtained by the sol-gel method with high-temperature treatment in an argon atmosphere demonstrated high phase purity of the spinel, a well-developed porous structure, and maximum specific capacitance. Impedance studies revealed low resistance values, indicating efficient charge transfer. The research results confirm the high potential of ZnCrO/carbon materials for the development of efficient and durable next-generation supercapacitors.
Keywords
наноструктурированные материалы углеродное волокно суперконденсаторы электродные материалы
Date of publication
01.10.2025
Year of publication
2025
Number of purchasers
0
Views
57

References

  1. 1. Zeshan M., Gassoumi A., Alsath S.A. et al. // Ceram. Int. 2024. V. 50. P. 47585. https://doi.org/10.1016/j.ceramint.2024.09.104
  2. 2. Yargun E., Fei H., Anik U. et al. // Mater. Chem. Phys. 2025. V. 344. P. 131120. https://doi.org/10.1016/j.matchemphys.2025.131120
  3. 3. Sarkar S., Akshaya R., Ghosh S. et al. // Electrochim. Acta. 2020. V. 332. P. 135368. https://doi.org/10.1016/j.electacta.2019.135368
  4. 4. Kumar R., Lee D., Agbulut U. et al. // J. Therm. Anal. Calorim. 2024. V. 149. P. 1895. https://doi.org/10.1007/s10973-023-12831-9
  5. 5. Sriram B., Baby J.N., Hsu Y. et al. // Inorg. Chem. 2021. V. 60. P. 12425. https://doi.org/10.1021/acs.inorgchem.1c01678
  6. 6. Karuppiah C., Thirumalraj B., Alagar S. et al. // Catalysts. 2021. V. 11. P. 76. https://doi.org/10.3390/catal11010076
  7. 7. Ефремов В.В., Корнеев Р.Н., Аксенова С.В. и др. // Журн. неорган. химии. 2025. Т. 70. С. 181. https://doi.org/10.31857/S0044457X25020059
  8. 8. Sriram B., Baby J.N., Wang S.F. et al. // ACS Appl. Electron. Mater. 2021. V. 3. P. 362. https://doi.org/10.1021/acsaelm.0c00906
  9. 9. Kaleeswarran P., Sriram B., Wanget S.F. et al. // Microchem. J. 2020. V. 163. P. 105886. https://doi.org/10.1016/j.microc.2020.105886
  10. 10. Mykhailoyych V., Caruntu G., Graur A. et al. // Micromachines. 2023. V. 14. P. 1. https://doi.org/10.3390/mi14091759
  11. 11. Siddique M.N., Ali T., Ahmed A. et al. // Nano-Struct. Nano-Objects. 2018. P. 156. https://doi.org/10.1016/j.nanoso.2018.06.001
  12. 12. Shichalin O.O., Ivanov N.P., Seroshtan A.I. et al. // J. Phys. Chem. Solids. 2025. V. 205. P. 112804. https://doi.org/10.1016/j.jpcs.2025.112804
  13. 13. Cherifi K., Rekhila G., Omeiri S. et al. // J. Photochem. Photobiol., A: Chem. 2019. V. 368. P. 290. https://doi.org/10.1016/j.jphotochem.2018.10.003.
  14. 14. Boumaza S., Bouguella A., Bouarab R. et al. // Int. J. Hydrogen Energy. 2009. V. 34. P. 4963. https://doi.org/10.1016/j.ijhydene.2008.11.059.
  15. 15. Abdel-Raoof A.M., Fouad M.M., Rashed N.S. et al. // J. Iran. Chem. Soc. 2023. V. 20. P. 2329. https://doi.org/10.1007/s13738-023-02843-5.
  16. 16. Saleem M., Varshney D. // J. Alloys Compd. 2017. V. 708. P. 397. https://doi.org/10.1016/j.jallcom.2017.03.016
  17. 17. Fei T., Ahmad T., Usman M. et al. // Electrochim. Acta. 2023. V. 476. P. 143673. https://doi.org/10.1016/j.electacta.2023.143673
  18. 18. Garg T., Saleem M., Kaurav N. et al. // Mater. Today Proc. 2023. V. 89. P. 4. https://doi.org/10.1016/j.matpr.2023.05.539
  19. 19. Sahu Y., Agrawal S. // Ceram. Int. 2025. V. 51. P. 14531. https://doi.org/10.1016/j.ceramint.2025.01.290
  20. 20. Marinkovic Z.V., Roméevic N., Stojanovic B. // J. Eur. Ceram. Soc. 2007. V. 27. P. 903. https://doi.org/10.1016/j.jeurceramsoc.2006.04.057
  21. 21. Abbasi A., Hamadamian M., Salavati-Niasari M. et al. // J. Colloid Interface Sci. 2017. V. 500. P. 276. https://doi.org/10.1016/j.jcis.2017.04.003
  22. 22. Naz S., Durrani S.K., Mehmood M. et al. // J. Saudi Chem. Soc. 2016. V. 20. P. 585. https://doi.org/10.1016/j.jscs.2014.12.007
  23. 23. Javed M., Khan A.A., Khan M.N. et al. // Mater. Sci. Eng. B. 2021. V. 269. P. 115168. https://doi.org/10.1016/j.mseb.2021.115168
  24. 24. Gingasu D., Mindru I., Patron L. et al. // J. Phys. Chem. Solids. 2013. V. 74. P. 1295. https://doi.org/10.1016/j.jpcs.2013.04.007
  25. 25. Song M., Pan X., Wang W. et al. // Chem. Eng. J. 2024. V. 504. P. 159088. https://doi.org/10.1016/j.cej.2024.159088
  26. 26. Benright Y., Nasrallah N., Chaabane T. et al. // Opt. Mater. (Amst). 2021. V. 115. P. 111035. https://doi.org/10.1016/j.optmat.2021.111035
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library