- PII
- S3034560X25100053-1
- DOI
- 10.7868/S3034560X25100053
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 10
- Pages
- 1269-1283
- Abstract
- Promising energy storage materials based on ZnCrO spinel, synthesized on carbon fiber matrices, remain insufficiently studied in the context of their application in electrochemical supercapacitors. In the present study, the synthesis of these materials was carried out using direct precipitation methods, sol-gel synthesis, and hydrothermal treatment followed by thermal processing. The main focus was on a comprehensive investigation of the morphology, phase composition, and electrochemical characteristics of the samples. Analysis was conducted using X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Samples obtained by the sol-gel method with high-temperature treatment in an argon atmosphere demonstrated high phase purity of the spinel, a well-developed porous structure, and maximum specific capacitance. Impedance studies revealed low resistance values, indicating efficient charge transfer. The research results confirm the high potential of ZnCrO/carbon materials for the development of efficient and durable next-generation supercapacitors.
- Keywords
- наноструктурированные материалы углеродное волокно суперконденсаторы электродные материалы
- Date of publication
- 01.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 57
References
- 1. Zeshan M., Gassoumi A., Alsath S.A. et al. // Ceram. Int. 2024. V. 50. P. 47585. https://doi.org/10.1016/j.ceramint.2024.09.104
- 2. Yargun E., Fei H., Anik U. et al. // Mater. Chem. Phys. 2025. V. 344. P. 131120. https://doi.org/10.1016/j.matchemphys.2025.131120
- 3. Sarkar S., Akshaya R., Ghosh S. et al. // Electrochim. Acta. 2020. V. 332. P. 135368. https://doi.org/10.1016/j.electacta.2019.135368
- 4. Kumar R., Lee D., Agbulut U. et al. // J. Therm. Anal. Calorim. 2024. V. 149. P. 1895. https://doi.org/10.1007/s10973-023-12831-9
- 5. Sriram B., Baby J.N., Hsu Y. et al. // Inorg. Chem. 2021. V. 60. P. 12425. https://doi.org/10.1021/acs.inorgchem.1c01678
- 6. Karuppiah C., Thirumalraj B., Alagar S. et al. // Catalysts. 2021. V. 11. P. 76. https://doi.org/10.3390/catal11010076
- 7. Ефремов В.В., Корнеев Р.Н., Аксенова С.В. и др. // Журн. неорган. химии. 2025. Т. 70. С. 181. https://doi.org/10.31857/S0044457X25020059
- 8. Sriram B., Baby J.N., Wang S.F. et al. // ACS Appl. Electron. Mater. 2021. V. 3. P. 362. https://doi.org/10.1021/acsaelm.0c00906
- 9. Kaleeswarran P., Sriram B., Wanget S.F. et al. // Microchem. J. 2020. V. 163. P. 105886. https://doi.org/10.1016/j.microc.2020.105886
- 10. Mykhailoyych V., Caruntu G., Graur A. et al. // Micromachines. 2023. V. 14. P. 1. https://doi.org/10.3390/mi14091759
- 11. Siddique M.N., Ali T., Ahmed A. et al. // Nano-Struct. Nano-Objects. 2018. P. 156. https://doi.org/10.1016/j.nanoso.2018.06.001
- 12. Shichalin O.O., Ivanov N.P., Seroshtan A.I. et al. // J. Phys. Chem. Solids. 2025. V. 205. P. 112804. https://doi.org/10.1016/j.jpcs.2025.112804
- 13. Cherifi K., Rekhila G., Omeiri S. et al. // J. Photochem. Photobiol., A: Chem. 2019. V. 368. P. 290. https://doi.org/10.1016/j.jphotochem.2018.10.003.
- 14. Boumaza S., Bouguella A., Bouarab R. et al. // Int. J. Hydrogen Energy. 2009. V. 34. P. 4963. https://doi.org/10.1016/j.ijhydene.2008.11.059.
- 15. Abdel-Raoof A.M., Fouad M.M., Rashed N.S. et al. // J. Iran. Chem. Soc. 2023. V. 20. P. 2329. https://doi.org/10.1007/s13738-023-02843-5.
- 16. Saleem M., Varshney D. // J. Alloys Compd. 2017. V. 708. P. 397. https://doi.org/10.1016/j.jallcom.2017.03.016
- 17. Fei T., Ahmad T., Usman M. et al. // Electrochim. Acta. 2023. V. 476. P. 143673. https://doi.org/10.1016/j.electacta.2023.143673
- 18. Garg T., Saleem M., Kaurav N. et al. // Mater. Today Proc. 2023. V. 89. P. 4. https://doi.org/10.1016/j.matpr.2023.05.539
- 19. Sahu Y., Agrawal S. // Ceram. Int. 2025. V. 51. P. 14531. https://doi.org/10.1016/j.ceramint.2025.01.290
- 20. Marinkovic Z.V., Roméevic N., Stojanovic B. // J. Eur. Ceram. Soc. 2007. V. 27. P. 903. https://doi.org/10.1016/j.jeurceramsoc.2006.04.057
- 21. Abbasi A., Hamadamian M., Salavati-Niasari M. et al. // J. Colloid Interface Sci. 2017. V. 500. P. 276. https://doi.org/10.1016/j.jcis.2017.04.003
- 22. Naz S., Durrani S.K., Mehmood M. et al. // J. Saudi Chem. Soc. 2016. V. 20. P. 585. https://doi.org/10.1016/j.jscs.2014.12.007
- 23. Javed M., Khan A.A., Khan M.N. et al. // Mater. Sci. Eng. B. 2021. V. 269. P. 115168. https://doi.org/10.1016/j.mseb.2021.115168
- 24. Gingasu D., Mindru I., Patron L. et al. // J. Phys. Chem. Solids. 2013. V. 74. P. 1295. https://doi.org/10.1016/j.jpcs.2013.04.007
- 25. Song M., Pan X., Wang W. et al. // Chem. Eng. J. 2024. V. 504. P. 159088. https://doi.org/10.1016/j.cej.2024.159088
- 26. Benright Y., Nasrallah N., Chaabane T. et al. // Opt. Mater. (Amst). 2021. V. 115. P. 111035. https://doi.org/10.1016/j.optmat.2021.111035