- PII
- S3034560X25090131-1
- DOI
- 10.7868/S3034560X25090131
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 9
- Pages
- 1217-1228
- Abstract
- In this study, the effect of reaction parameters on the stabilization of nickel ferrite hydroxols in the presence of polyethylenimine (PEI) was determined using the design of experiment (DOE) method. In the optimal conditions, a nickel ferrite hydroxol was obtained, and its sedimentation stability was maintained for two months. A NiFeO/Au hybrid material was obtained by adsorbing on the surface of magnetic gold particles and reducing Au(III) by hydroxylamine in the presence of PEI, over four steps. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) show the NiFeO/Au material is Au nanoparticles 4 nm in size and uniformly distributed on the surface of ferrite nickel nanoparticles 9.7 nm in size. The gold particles are firmly attached to the surface of nickel ferrite and do not separate during post-synthetic and ultrasonic treatment. Besides their content can be controlled by adjusting the number of gold reduction stages.
- Keywords
- наночастицы феррит никеля(II) стабилизация гибридные наночастицы золото
- Date of publication
- 01.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 28
References
- 1. Laurent S., Forge D., Port M. et al. // Chem. Rev. 2008. V. 108. № 6. P. 2064. https://doi.org/10.1021/cr068445e
- 2. Cernat A., Florea A., Rus I. et al. Biopolymer. Nanomater.: Fundamentals and Applications / Elsevier, 2021. P. 639. https://doi.org/10.1016/B978-0-12-824364-0.00014-9
- 3. Lapusan R., Borlan R., Focsan M. // Nanoscale Adv. 2024. V. 6. № 9. P. 2234. https://doi.org/10.1039/D3NA01064C
- 4. Llano-Sepúlveda S., Sánchez-Ríos Y., Fontalvo J. // Chem. Eng. Process. - Process Intensification. 2024. V. 202. P. 109866. https://doi.org/10.1016/j.cep.2024.109866
- 5. Böck N.C., Sundermann J., Koziolek M. et al. // Eur. J. Pharm. Biopharm. 2025. V. 208. Р. 114651. https://doi.org/10.1016/j.ejpb.2025.114651
- 6. Muthukumaran T., Philip J. // Adv. Colloid Interface Sci. 2024. V. 334. P. 103314. https://doi.org/10.1016/j.cis.2024.103314
- 7. Milanovic M., Stijepovic I., Pavlovic V. et al. // Proc. Application Ceram. 2016. V. 10. № 4. P. 287. https://doi.org/10.2298/PAC1604287M
- 8. Cacua K., Ordoñez F., Zapata C. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2019. V. 583. https://doi.org/10.1016/j.colsurfa.2019.123960
- 9. Soares P.I.P., Alves A.M.R., Pereira L.C.J. et al. // J. Colloid Interface Sci. 2014. V. 419. P. 46. https://doi.org/10.1016/j.jcis.2013.12.045
- 10. Soares P.I.P., Laia C.A.T., Carvalho A. et al. // Appl. Surf. Sci. 2016. V. 383. P. 240. https://doi.org/10.1016/j.apsusc.2016.04.181
- 11. Soares P.I.P., Lochte F., Echeverria C. et al. // Nanotechnology. 2015. V. 26. № 42. https://doi.org/10.1088/0957-4484/26/42/425704
- 12. Khmara I., Strbak O., Zavisova V. et al. // J. Magn. Magn. Mater. 2019. V. 474. P. 319. https://doi.org/10.1016/j.jmmm.2018.11.026
- 13. Goon I.Y., Lai L.M.H., Lim M. et al. // Chem. Mater. 2009. V. 21. № 4. P. 673. https://doi.org/10.1021/cm8025329
- 14. Reguera J., Flora T., Winckelmans N. et al. // Nanoscale Adv. 2020. V. 2. № 6. P. 2525. https://doi.org/10.1039/D0NA00102C
- 15. Saykova D., Saikova S., Mikhlin Y. et al. // Metals (Basel). 2020. V. 10. № 8. P. 1075. https://doi.org/10.3390/met10081075
- 16. Nemkova D., Saikova S., Krolikov A. // Crystals (Basel). 2025. V. 15. № 1. P. 72. https://doi.org/10.3390/cryst15010072
- 17. Silvestri A., Mondini S., Marelli M. et al. // Langmuir. 2016. V. 32. № 28. P. 7117. https://doi.org/10.1021/acs.langmuir.6b01266
- 18. Hu Y., Meng L., Niu L. et al. // ACS Appl. Mater. Interfaces. 2013. V. 5. № 11. P. 4586. https://doi.org/10.1021/am400843d
- 19. Fan Z., Shelton M., Singh A.K. et al. // ACS Nano. 2012. V. 6. № 2. P. 1065. https://doi.org/10.1021/nn2045246
- 20. Zhao H., Ning X., Yao H. et al. // Mater. Chem. Phys. 2021. V. 265. № 666. P. 124480. https://doi.org/10.1016/j.matchemphys.2021.124480
- 21. Yeap S.P., Ahmad A.L., Ooi B.S. et al. // Langmuir. 2012. V. 28. № 42. P. 14878. https://doi.org/10.1021/la303169g
- 22. Mikalauskaitė A., Kondrotas R., Niaura G. et al. // J. Phys. Chem. C. 2015. V. 119. № 30. P. 17398. https://doi.org/10.1021/acs.jpcc.5b03528
- 23. Saikova S., Pavlikov A., Trofimova T. et al. // Metals (Basel). 2021. V. 11. № 5. P. 705. https://doi.org/10.3390/met11050705
- 24. Pavlikov A.Y., Saikova S.V., Karpov D.V. et al. // Inorg. Mater. 2024. V. 60. № 11. P. 1344. https://doi.org/10.1134/S0020168525700086
- 25. Sun Y., Diao Y., Wang H. et al. // Ceram. Int. 2017. V. 43. https://doi.org/10.1016/j.ceramint.2017.09.029
- 26. Rarokar N., Yadav S., Saoji S. et al. // Int. J. Pharm. X. 2024. V. 7. P. 100231. https://doi.org/https://doi.org/10.1016/j.ijpx.2024.100231
- 27. de Lizarrondo S.M., Jacqmarcq C., Naveau M. et al. // Sci. Adv. 2022. V. 8. № 28. P. 1. https://doi.org/10.1126/sciadv.abm3596
- 28. Сайкова С.В., Кроликов А.Е., Немкова Д.И. и др. // Журн. Сиб. фед. ун-та. 2024. Т. 17. № 1. С. 151.
- 29. Сайкова С.В., Пантелеева М.В., Немкова Д.И. и др. // Способ получения суперпарамагнитных наночастиц феррита никеля. Патент № 2801852 РФ. Опубл. 17.08.2023.
- 30. Kaszuba M., McKnight D., Connah M.T. et al. // J. Nanopart. Res. 2008. V. 10. № 5. P. 823. https://doi.org/10.1007/s11051-007-9317-4
- 31. Ribeiro C.A.S., Panico K., Handajevsky T.J. et al. // Langmuir. 2023. V. 39. № 48. P. 17353. https://doi.org/10.1021/acs.langmuir.3c02538
- 32. Berger P., Maurer R., Celli G. // Experimental Design with Applications in Management, Engineering, and the Science, 2nd Edition. Springer. 2018. https://doi.org/10.1007/978-3-319-64583-4
- 33. Gilb S., Hartl K., Kartouzian A. et al. // Eur. Phys. J. D. 2007. V. 45. № 3. P. 501. https://doi.org/10.1140/epjd/e2007-00211-9
- 34. Ramírez F.J., Tuñón I., Silla E. // Chem. Phys. 2004. V. 303. № 1–2. P. 85. https://doi.org/10.1016/j.chemphys.2004.05.007
- 35. Wiercigroch E., Szafraniec E., Czamara K. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2017. V. 185. P. 317. https://doi.org/10.1016/j.saa.2017.05.045
- 36. Balakrishnan G., Barnett G.V., Kar S.R. et al. // Anal. Chem. 2018. V. 90. № 11. P. 6959. https://doi.org/10.1021/acs.analchem.8b01238
- 37. Mikalauskaite A., Kondrotas R., Niaura G. et al. // J. Phys. Chem. C. 2015. V. 119. № 30. P. 17398. https://doi.org/10.1021/acs.jpcc.5b03528
- 38. Трофимова Т.В., Сайкова С.В., Сайкова Д.И. // Журн. Сиб. фед. ун-та. 2016. Т. 9. № 4. С. 496. https://doi.org/10.17516/1998-2836-2016-9-4-496-503