RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

INFLUENCE OF SILVER PRECURSORS INTRODUCING METHOD ON PROPERTIES OF MAGNETICALLY RECOVERABLE Ag/FeO CATALYSTS IN 4-NITROPHENOL REDUCTION

PII
S3034560X25090121-1
DOI
10.7868/S3034560X25090121
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 9
Pages
1201-1216
Abstract
The conducted study aims to compare the properties of magnetically recoverable Ag/FeO catalysts obtained by different synthesis approaches (impregnation, coprecipitation, and impregnation of the pre-reduced support), and to test their activity in 4-nitrophenol reduction in aqueous solution at room temperature. The most active catalysts in 4-nitrophenol reduction are the samples obtained by impregnation with Ag precursors of the pure support ( = 2.19 min) and the pre-reduced one in H/Ar flow at 250°C ( = 3.21 min). This is due to the formation of dispersed and active Ag particles from the cationic precursor under the reducing agent NaBH exposure. The nature of the Ag precursors (Ag or Ag(NH) ) affects Ag particles' activity. The catalysts in which the ammonia complex Ag(NH) was used as the silver precursor exhibit lower activity compared to samples in which AgNO was used. Differences in thermodynamics and kinetics of Ag or Ag(NH) to Ag reduction determine the morphology and dispersion of metallic silver particles, which affects the activity of the resulting catalysts. The presence of magnetic properties in the catalyst samples is shown by the exposure of an external magnetic field.
Keywords
катализатор Ag/FeO наночастицы серебра оксид железа восстановление 4-нитрофенола мягкие условия магнитное извлечение
Date of publication
01.09.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Parkinson G.S. // Surf. Sci. Rep. 2016. V. 71. № 1. P. 272. https://doi.org/10.1016/j.surfrep.2016.02.001
  2. 2. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов / Уч. пособие. М.: ИКЦ “Академкнига”, 2006. 309 с.
  3. 3. Choudhury B.J., Moholkar V.S. // Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites / Eds. Thomas S., Nochehdehi A.R. Cham: Springer, 2022. P. 879. https://doi.org/10.1007/978-3-030-34007-0_34-1
  4. 4. Wu K., Liu J., Saha R. et al. // ACS Omega. 2021. V. 6. P. 6274. https://doi.org/10.1021/acsomega.0c05845
  5. 5. Fock J., Bogart L.K., González-Alonso D. et al. // J. Phys. D: Appl. Phys. 2017. V. 50. P. 265005. https://doi.org/10.1088/1361-6463/aa73fa
  6. 6. Andrade Â.L., Fabris J.D., Domingues R.Z., Pereira M.C. // Curr. Pharm. Des. 2015. V. 21. № 37. P. 5417. https://doi.org/10.2174/1381612821666150917093543
  7. 7. Dar M.I., Shivashankar S.A. // RCS Adv. 2014. V. 4. P. 4105. https://doi.org/10.1039/c3ra45457f
  8. 8. Li Z., Chanéac C., Berger G. et al. // RSC Adv. 2019. V. 9. P. 33633. https://doi.org/10.1039/c9ra03234g
  9. 9. Lam U.T., Mammucari R., Suzuki K., Foster N.R. // Ind. Eng. Chem. Res. 2008. V. 47. P. 599. https://doi.org/10.1021/ie070494+
  10. 10. Liu S., Yao K., Fu L.-H., Ma M.-G. // RSC Adv. 2016. V. 6. № 3. P. 2135. https://doi.org/10.1039/c5ra22985e
  11. 11. Sezer N., Ari I., Biçer Y., Koç M. // J. Magn. Magn. Mater. 2021. V. 538. P. 168300. https://doi.org/10.1016/j.jmmm.2021.168300
  12. 12. Liu S., Ma C., Ma M.-G., Xu F. // Composite Nanoadsorbents / Eds. Kyzas G.Z., Mitropoulos A.C. Amsterdam: Elsevier, 2019. P. 295. https://doi.org/10.1016/B978-0-12-814132-8.00013-7
  13. 13. Taleb K., Chekalil N., Saidi-Besbes S. // Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites / Eds. Thomas S., Nochehdehi A.R. Cham: Springer, 2022. P. 915. https://doi.org/10.1007/978-3-030-34007-0_55-1
  14. 14. Simonescu C.M., Culita D.C., Tatarus A. et al. // Nanomater. 2022. V. 12. № 13. P. 2247. https://doi.org/10.3390/nano12132247
  15. 15. Wu W., Wu Z., Yu T. et al. // Sci. Technol. Adv. Mater. 2015. V. 16. P. 023501. https://doi.org/10.1088/1468-6996/16/2/023501
  16. 16. Alivand M.S., Mazaheri O., Wu Y. et al. // Nat. Commun. 2022. V. 13. P. 1249. https://doi.org/10.1038/s41467-022-28869-6
  17. 17. Mendes M.S.L., Araujo A.B., Neves M.A.F.S., Pedrosa M.S. // Curr. Appl. Polym. Sci. 2022. V. 5. P. 3. https://doi.org/10.2174/2452271605666220304091807
  18. 18. Roy S.D., Das K.C., Dhar S.S. // Inorg. Chem. Commun. 2021. V. 134. P. 109050. https://doi.org/10.1016/j.inoche.2021.109050
  19. 19. Ahmad T., Phul R., Khan H. // Curr. Org. Chem. 2019. V. 23. P. 994. https://doi.org/10.2174/1385272823666190314153208
  20. 20. Pires M.S., Lacerda L.C.T., Corrêa S. et al. // Recent Advances in Complex Functional Materials / Eds. Longo E., La Porta F.A. Cham: Springer, 2017. P. 409. https://doi.org/10.1007/978-3-319-53898-3_16
  21. 21. Wei X., Zhou Y., Li Y., Shen W. // RSC Adv. 2015. V. 5. P. 66141. https://doi.org/10.1039/c5ra08254d
  22. 22. Maharjan A., Dikshit P.K., Gupta A., Kim B.S. // J. Chem. Technol. Biotechnol. 2020. V. 95. P. 2495. https://doi.org/10.1002/jctb.6431
  23. 23. Pereira M.C., Oliveira L.C.A., Murad E. // Clay Miner. 2012. V. 47. P. 285. https://doi.org/10.1180/claymin.2012.047.3.01
  24. 24. Rusevova K., Kopinke F.-D., Georgi A. // J. Hazard. Mater. 2012. V. 241–242. P. 433. https://doi.org/10.1016/j.jhazmat.2012.09.068
  25. 25. Kumar A., Chauhan A.S., Bains R., Das P. // Org. Biomol. Chem. 2023. V. 21. P. 3829. https://doi.org/10.1039/D3OB00314K
  26. 26. Geng L., Zheng B., Wang X. et al. // Chem. Cat. Chem. 2016. V. 8. P. 805. https://doi.org/10.1002/cctc.201501149
  27. 27. Kumar P., Tomar V., Kumar D. et al. // Tetrahedron. 2022. V. 106–107. P. 132641. https://doi.org/10.1016/j.tet.2022.132641
  28. 28. Yan F., Sun R. // Mater. Res. Bull. 2014. V. 57. P. 293. https://doi.org/10.1016/j.materresbull.2014.06.012
  29. 29. Wang Z., Shen B., Aihua Z., He N. // Chem. Eng. J. 2005. V. 113. P. 27. https://doi.org/10.1016/j.cej.2005.08.003
  30. 30. Zhang D.-H., Li G.-D., Li J.-X., Chen J.-S. // Chem. Commun. 2008. P. 3414. https://doi.org/10.1039/b805737k
  31. 31. Milone C., Ingoglia R., Schipilliti L. et al. // J. Catal. 2005. V. 236. P. 80. https://doi.org/10.1016/j.jcat.2005.09.023
  32. 32. Leonel A.G., Mansur A.A.P., Mansur H.S. // Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites / Eds. Thomas S., Nochehdehi A.R. Cham: Springer, 2022. P. 1103. https://doi.org/10.1007/978-3-030-34007-0_37-1
  33. 33. Savel’eva A.S., Evdokimova E.V., Mamontov G.V. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1754. https://doi.org/10.1134/S0036023624602356
  34. 34. Jeon H., Lee H.-J. // Nanomater. 2023. V. 13. P. 1037. https://doi.org/10.3390/nano13061037
  35. 35. Paul B., Sharma S.K., Adak S. et al. // New J. Chem. 2019. V. 43. P. 8911. https://doi.org/10.1039/c9nj01085h
  36. 36. Lei G., Ma J., Li Z. et al. // Nanomater. 2018. V. 8. P. 877. https://doi.org/10.3390/nano8110877
  37. 37. Grabchenko M.V., Mamontov G.V., Zaikovskii V.I. et al. // Appl. Catal. B: Environ. 2020. V. 260. P. 118148. https://doi.org/10.1016/j.apcatb.2019.118148
  38. 38. Taratayko A., Kolobova E., Mamontov G. // Catalysts. 2022. V. 12. № 11. P. 1393. https://doi.org/10.3390/catal12111393
  39. 39. Chernykh M., Mikheeva N., Zaikovskii V. et al. // Catalysts. 2020. V. 10. P. 580. https://doi.org/10.3390/catal10050580
  40. 40. Shi Y., Zhang X., Zhu Y. et al. // RSC Adv. 2016. V. 6. P. 47966. https://doi.org/10.1039/C6RA00631K
  41. 41. Joshi M.K., Pant H.R., Kim H.J. et al. // Colloids Surf. A: Physicochem. Eng. Asp. 2014. V. 446. P. 102. https://doi.org/10.1016/j.colsurfa.2014.01.058
  42. 42. Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
  43. 43. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. 456 с.
  44. 44. Bradley M.J., Tratnyek P.G. // ACS Earth Space Chem. 2019. V. 3. P. 688. https://doi.org/10.1021/acsearthspacechem.8b00200
  45. 45. Kim W., Suh C.-Y., Cho S.-W. et al. // Talanta. 2012. V. 94. P. 348. https://doi.org/10.1016/j.talanta.2012.03.001
  46. 46. Bondarenko L.S., Pankratov D.A., Dzeranov A.A. et al. // Mendeleev Commun. 2022. V. 32. P. 642. https://doi.org/10.1016/j.mencom.2022.09.025
  47. 47. Pankratov D.A., Anuchina M.M., Spiridonov F.M., Krivtsov G.G. // Crystallogr. Rep. 2020. V. 65. № 3. P. 393. https://doi.org/10.1134/S1063774520030244
  48. 48. Lin H.-Y., Chen Y.-W., Li C. // Thermochim. Acta. 2003. V. 400. P. 61. https://doi.org/10.1016/S0040-6031 (02)00478-1
  49. 49. Zhang X., Yang Y., Lv X. et al. // Catalysts. 2017. V. 7. P. 382. https://doi.org/10.3390/catal7120382
  50. 50. Boudart M., Vannice M.A., Benson J.E. // Z. Phys. Chem. Neue Folge. 1969. Bd. 64. S. 171. https://doi.org/10.1524/zpch.1969.64.1_4.171
  51. 51. Taratayko A., Larichev Yu., Zaikovskii V. et al. // Catal. Today. 2021. V. 375. P. 576. https://doi.org/10.1016/j.cattod.2020.05.001
  52. 52. Chang S., Liu C., Sun Y. et al. // ACS Appl. Nano Mater. 2020. V. 3. P. 2302. https://doi.org/10.1021/acsanm.9b02415
  53. 53. Chernykh M.V., Mikheeva N.N., Zaikovskii V.I., Mamontov G.V. // Kinet. Catal. 2020. V. 61. № 5. P. 794. https://doi.org/10.1134/S002315842005002X
  54. 54. Jiang S.-F., Ling L.-L., Xu Z. et al. // Ind. Eng. Chem. Res. 2018. V. 57. P. 13055. https://doi.org/10.1021/acs.iecr.8b02777
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library