- PII
- S3034560X25090121-1
- DOI
- 10.7868/S3034560X25090121
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 9
- Pages
- 1201-1216
- Abstract
- The conducted study aims to compare the properties of magnetically recoverable Ag/FeO catalysts obtained by different synthesis approaches (impregnation, coprecipitation, and impregnation of the pre-reduced support), and to test their activity in 4-nitrophenol reduction in aqueous solution at room temperature. The most active catalysts in 4-nitrophenol reduction are the samples obtained by impregnation with Ag precursors of the pure support ( = 2.19 min) and the pre-reduced one in H/Ar flow at 250°C ( = 3.21 min). This is due to the formation of dispersed and active Ag particles from the cationic precursor under the reducing agent NaBH exposure. The nature of the Ag precursors (Ag or Ag(NH) ) affects Ag particles' activity. The catalysts in which the ammonia complex Ag(NH) was used as the silver precursor exhibit lower activity compared to samples in which AgNO was used. Differences in thermodynamics and kinetics of Ag or Ag(NH) to Ag reduction determine the morphology and dispersion of metallic silver particles, which affects the activity of the resulting catalysts. The presence of magnetic properties in the catalyst samples is shown by the exposure of an external magnetic field.
- Keywords
- катализатор Ag/FeO наночастицы серебра оксид железа восстановление 4-нитрофенола мягкие условия магнитное извлечение
- Date of publication
- 01.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 27
References
- 1. Parkinson G.S. // Surf. Sci. Rep. 2016. V. 71. № 1. P. 272. https://doi.org/10.1016/j.surfrep.2016.02.001
- 2. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов / Уч. пособие. М.: ИКЦ “Академкнига”, 2006. 309 с.
- 3. Choudhury B.J., Moholkar V.S. // Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites / Eds. Thomas S., Nochehdehi A.R. Cham: Springer, 2022. P. 879. https://doi.org/10.1007/978-3-030-34007-0_34-1
- 4. Wu K., Liu J., Saha R. et al. // ACS Omega. 2021. V. 6. P. 6274. https://doi.org/10.1021/acsomega.0c05845
- 5. Fock J., Bogart L.K., González-Alonso D. et al. // J. Phys. D: Appl. Phys. 2017. V. 50. P. 265005. https://doi.org/10.1088/1361-6463/aa73fa
- 6. Andrade Â.L., Fabris J.D., Domingues R.Z., Pereira M.C. // Curr. Pharm. Des. 2015. V. 21. № 37. P. 5417. https://doi.org/10.2174/1381612821666150917093543
- 7. Dar M.I., Shivashankar S.A. // RCS Adv. 2014. V. 4. P. 4105. https://doi.org/10.1039/c3ra45457f
- 8. Li Z., Chanéac C., Berger G. et al. // RSC Adv. 2019. V. 9. P. 33633. https://doi.org/10.1039/c9ra03234g
- 9. Lam U.T., Mammucari R., Suzuki K., Foster N.R. // Ind. Eng. Chem. Res. 2008. V. 47. P. 599. https://doi.org/10.1021/ie070494+
- 10. Liu S., Yao K., Fu L.-H., Ma M.-G. // RSC Adv. 2016. V. 6. № 3. P. 2135. https://doi.org/10.1039/c5ra22985e
- 11. Sezer N., Ari I., Biçer Y., Koç M. // J. Magn. Magn. Mater. 2021. V. 538. P. 168300. https://doi.org/10.1016/j.jmmm.2021.168300
- 12. Liu S., Ma C., Ma M.-G., Xu F. // Composite Nanoadsorbents / Eds. Kyzas G.Z., Mitropoulos A.C. Amsterdam: Elsevier, 2019. P. 295. https://doi.org/10.1016/B978-0-12-814132-8.00013-7
- 13. Taleb K., Chekalil N., Saidi-Besbes S. // Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites / Eds. Thomas S., Nochehdehi A.R. Cham: Springer, 2022. P. 915. https://doi.org/10.1007/978-3-030-34007-0_55-1
- 14. Simonescu C.M., Culita D.C., Tatarus A. et al. // Nanomater. 2022. V. 12. № 13. P. 2247. https://doi.org/10.3390/nano12132247
- 15. Wu W., Wu Z., Yu T. et al. // Sci. Technol. Adv. Mater. 2015. V. 16. P. 023501. https://doi.org/10.1088/1468-6996/16/2/023501
- 16. Alivand M.S., Mazaheri O., Wu Y. et al. // Nat. Commun. 2022. V. 13. P. 1249. https://doi.org/10.1038/s41467-022-28869-6
- 17. Mendes M.S.L., Araujo A.B., Neves M.A.F.S., Pedrosa M.S. // Curr. Appl. Polym. Sci. 2022. V. 5. P. 3. https://doi.org/10.2174/2452271605666220304091807
- 18. Roy S.D., Das K.C., Dhar S.S. // Inorg. Chem. Commun. 2021. V. 134. P. 109050. https://doi.org/10.1016/j.inoche.2021.109050
- 19. Ahmad T., Phul R., Khan H. // Curr. Org. Chem. 2019. V. 23. P. 994. https://doi.org/10.2174/1385272823666190314153208
- 20. Pires M.S., Lacerda L.C.T., Corrêa S. et al. // Recent Advances in Complex Functional Materials / Eds. Longo E., La Porta F.A. Cham: Springer, 2017. P. 409. https://doi.org/10.1007/978-3-319-53898-3_16
- 21. Wei X., Zhou Y., Li Y., Shen W. // RSC Adv. 2015. V. 5. P. 66141. https://doi.org/10.1039/c5ra08254d
- 22. Maharjan A., Dikshit P.K., Gupta A., Kim B.S. // J. Chem. Technol. Biotechnol. 2020. V. 95. P. 2495. https://doi.org/10.1002/jctb.6431
- 23. Pereira M.C., Oliveira L.C.A., Murad E. // Clay Miner. 2012. V. 47. P. 285. https://doi.org/10.1180/claymin.2012.047.3.01
- 24. Rusevova K., Kopinke F.-D., Georgi A. // J. Hazard. Mater. 2012. V. 241–242. P. 433. https://doi.org/10.1016/j.jhazmat.2012.09.068
- 25. Kumar A., Chauhan A.S., Bains R., Das P. // Org. Biomol. Chem. 2023. V. 21. P. 3829. https://doi.org/10.1039/D3OB00314K
- 26. Geng L., Zheng B., Wang X. et al. // Chem. Cat. Chem. 2016. V. 8. P. 805. https://doi.org/10.1002/cctc.201501149
- 27. Kumar P., Tomar V., Kumar D. et al. // Tetrahedron. 2022. V. 106–107. P. 132641. https://doi.org/10.1016/j.tet.2022.132641
- 28. Yan F., Sun R. // Mater. Res. Bull. 2014. V. 57. P. 293. https://doi.org/10.1016/j.materresbull.2014.06.012
- 29. Wang Z., Shen B., Aihua Z., He N. // Chem. Eng. J. 2005. V. 113. P. 27. https://doi.org/10.1016/j.cej.2005.08.003
- 30. Zhang D.-H., Li G.-D., Li J.-X., Chen J.-S. // Chem. Commun. 2008. P. 3414. https://doi.org/10.1039/b805737k
- 31. Milone C., Ingoglia R., Schipilliti L. et al. // J. Catal. 2005. V. 236. P. 80. https://doi.org/10.1016/j.jcat.2005.09.023
- 32. Leonel A.G., Mansur A.A.P., Mansur H.S. // Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites / Eds. Thomas S., Nochehdehi A.R. Cham: Springer, 2022. P. 1103. https://doi.org/10.1007/978-3-030-34007-0_37-1
- 33. Savel’eva A.S., Evdokimova E.V., Mamontov G.V. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1754. https://doi.org/10.1134/S0036023624602356
- 34. Jeon H., Lee H.-J. // Nanomater. 2023. V. 13. P. 1037. https://doi.org/10.3390/nano13061037
- 35. Paul B., Sharma S.K., Adak S. et al. // New J. Chem. 2019. V. 43. P. 8911. https://doi.org/10.1039/c9nj01085h
- 36. Lei G., Ma J., Li Z. et al. // Nanomater. 2018. V. 8. P. 877. https://doi.org/10.3390/nano8110877
- 37. Grabchenko M.V., Mamontov G.V., Zaikovskii V.I. et al. // Appl. Catal. B: Environ. 2020. V. 260. P. 118148. https://doi.org/10.1016/j.apcatb.2019.118148
- 38. Taratayko A., Kolobova E., Mamontov G. // Catalysts. 2022. V. 12. № 11. P. 1393. https://doi.org/10.3390/catal12111393
- 39. Chernykh M., Mikheeva N., Zaikovskii V. et al. // Catalysts. 2020. V. 10. P. 580. https://doi.org/10.3390/catal10050580
- 40. Shi Y., Zhang X., Zhu Y. et al. // RSC Adv. 2016. V. 6. P. 47966. https://doi.org/10.1039/C6RA00631K
- 41. Joshi M.K., Pant H.R., Kim H.J. et al. // Colloids Surf. A: Physicochem. Eng. Asp. 2014. V. 446. P. 102. https://doi.org/10.1016/j.colsurfa.2014.01.058
- 42. Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
- 43. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. 456 с.
- 44. Bradley M.J., Tratnyek P.G. // ACS Earth Space Chem. 2019. V. 3. P. 688. https://doi.org/10.1021/acsearthspacechem.8b00200
- 45. Kim W., Suh C.-Y., Cho S.-W. et al. // Talanta. 2012. V. 94. P. 348. https://doi.org/10.1016/j.talanta.2012.03.001
- 46. Bondarenko L.S., Pankratov D.A., Dzeranov A.A. et al. // Mendeleev Commun. 2022. V. 32. P. 642. https://doi.org/10.1016/j.mencom.2022.09.025
- 47. Pankratov D.A., Anuchina M.M., Spiridonov F.M., Krivtsov G.G. // Crystallogr. Rep. 2020. V. 65. № 3. P. 393. https://doi.org/10.1134/S1063774520030244
- 48. Lin H.-Y., Chen Y.-W., Li C. // Thermochim. Acta. 2003. V. 400. P. 61. https://doi.org/10.1016/S0040-6031 (02)00478-1
- 49. Zhang X., Yang Y., Lv X. et al. // Catalysts. 2017. V. 7. P. 382. https://doi.org/10.3390/catal7120382
- 50. Boudart M., Vannice M.A., Benson J.E. // Z. Phys. Chem. Neue Folge. 1969. Bd. 64. S. 171. https://doi.org/10.1524/zpch.1969.64.1_4.171
- 51. Taratayko A., Larichev Yu., Zaikovskii V. et al. // Catal. Today. 2021. V. 375. P. 576. https://doi.org/10.1016/j.cattod.2020.05.001
- 52. Chang S., Liu C., Sun Y. et al. // ACS Appl. Nano Mater. 2020. V. 3. P. 2302. https://doi.org/10.1021/acsanm.9b02415
- 53. Chernykh M.V., Mikheeva N.N., Zaikovskii V.I., Mamontov G.V. // Kinet. Catal. 2020. V. 61. № 5. P. 794. https://doi.org/10.1134/S002315842005002X
- 54. Jiang S.-F., Ling L.-L., Xu Z. et al. // Ind. Eng. Chem. Res. 2018. V. 57. P. 13055. https://doi.org/10.1021/acs.iecr.8b02777