RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

INFLUENCE OF THE PROPORTION AND TYPE OF FUNCTIONAL GROUPS ON THE SELECTIVE PROPERTIES OF MODIFIED POLY-3-AMINOPROPYLSESQUIOXANES TOWARD SILVER(I)

PII
S3034560X25090105-1
DOI
10.7868/S3034560X25090105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 9
Pages
1180-1187
Abstract
The effect of the proportion and type of functional groups on the selective properties of modified poly(3-aminopropylsilsesquioxanes) in silver(I) extraction from multicomponent aqueous solutions was studied. The sorbents were obtained by modifying poly(3-aminopropylsilsesquioxane) with sulfur-containing reagents at different temperature conditions, which allowed varying the ratio of monosubstituted and disubstituted thiourea groups, as well as amino groups. The sorbent structure was determined by IR spectroscopy and elemental analysis. It was found that an increase in the proportion of monosubstituted thiourea groups (from 40 to 75%) in the sorbent structure led to an increase in the degree of extraction and selectivity with respect to silver(I) in the pH range of 1–4. The introduction of an additional heating stage promotes the formation of a larger number of monosubstituted groups. Sorption of accompanying metal ions (copper(II), calcium(II), magnesium(II)) is minimal in a wide pH range. The obtained results allow us to purposefully regulate the sorption and selective properties of materials by varying the ratio of functional groups on the surface of the sorbent.
Keywords
сорбция полисилсесквиоксан модифицирование сорбент N,N'-дифенилтиомочевина
Date of publication
01.09.2025
Year of publication
2025
Number of purchasers
0
Views
26

References

  1. 1. Tang J., Chen Y., Wang S. et al. // Environm. Res. 2022. V. 210. P. 112870. https://doi.org/10.1016/j.envres.2022.112870
  2. 2. Ghomi A.G., Asasian-Kolur N., Sharifian S. et al. // J. Environm. Chem. Eng. 2020. V. 8. № 4. Р. 103996. https://doi.org/10.1016/j.jece.2020.103996
  3. 3. Rocky M.M.H., Rahman I.M.M., Taka S. et al. // Chem. Eng. J. 2024. V. 500. Р. 157040. https://doi.org/10.1016/j.cej.2024.157040
  4. 4. Hameed R., Divyabharathi R., Kumar Yadav K. et al. // Toxicology. 2025. V. 511. P. 154019. https://doi.org/10.1016/j.tox.2024.154019
  5. 5. Li D., Zhang X., Liang X. et al. // Arab. J. Chem. 2023. V. 16. № 7. P. 104836. https://doi.org/10.1016/j.arabjc.2023.104836
  6. 6. Memon M.B., Tao M., Ahmed T. et al. // Proces. Saf. Environm. Protect. 2025. V. 197. Р. 107069. https://doi.org/10.1016/j.psep.2025.107069
  7. 7. Bruez C., Rousseau A., Lefèvre G. et al. // Hydrometallurgy. 2024. V. 225. P. 106279. https://doi.org/10.1016/j.hydromet.2024.106279
  8. 8. Diallo S., Tran L.-H., Larivière D. et al. // Miner. Eng. 2025. V. 222. P. 109157. https://doi.org/10.1016/j.mineng.2024.109157
  9. 9. Russo R.E., Awais M., Fattobene M. et al. // Environm. Tech. Innov. 2024. V. 36. P. 103803. https://doi.org/10.1016/j.eti.2024.103803
  10. 10. Саломатин А.М., Зиновьева И.В., Заходяева Ю.А. и др. // Журн. неорган. химии. 2024. Т. 69. С. 1063.
  11. 11. Cui J., Zhang L. // J. Hazard. Mater. 2008. V. 158. № 2–3. P. 228. https://doi.org/10.1016/j.jhazmat.2008.02.001
  12. 12. Abdelbasir S.M., Hassan S.S.M., Kamel A.H. et al. // Environm. Sci. Pol. Res. 2018. V. 25. Р. 16533. https://doi.org/10.1007/s11356-018-2136-6
  13. 13. Aydoğan S., Motasim M., Ali B. // Heliyon. V. 10. № 2. Р. e24784. https://doi.org/10.1016/j.heliyon.2024.e24784
  14. 14. Kahar I.N.S., Othman N., Idrus-Saidi S.A. et al. // Chem. Eng. Res. Des. 2024. V. 212. P. 434. https://doi.org/10.1016/j.cherd.2024.11.018
  15. 15. Mora C.C., Contreras J.A.R., Villarreal M.C.R. et al. // Heliyon. 2025. V. 11. № 2. Р. e41878. https://doi.org/10.1016/j.heliyon.2025.e41878
  16. 16. Li W., Liu B., Wang S. et al. // Chem. Eng. J. 2024. V. 495. P. 153455. https://doi.org/10.1016/j.cej.2024.153455
  17. 17. Wang X., Wang L., Ma S. et al. // Chem. Eng. J. 2023. V. 451. № 2. P. 138539. https://doi.org/10.1016/j.cej.2022.138539
  18. 18. Han B., Liu Z., Xia D. et al. // Sep. Purif. Technol. 2025. V. 366. P. 132689. https://doi.org/10.1016/j.seppur.2025.132689
  19. 19. Tokalıoğlu Ş., Moghaddam S.T.H., Demir S. // Talanta. 2024. V. 274. P. 126094. https://doi.org/10.1016/j.talanta.2024.126094
  20. 20. Isler, S. Haykiri-Acma H., Özbek N. et al. // Microchem. J. 2025. V. 208. P. 112473. https://doi.org/10.1016/j.microc.2024.112473
  21. 21. Shi C., Huang Y., Han G. et al. // Sep. Purif. Technol. 2025. V. 363. № 2. P. 132137. https://doi.org/10.1016/j.seppur.2025.132137
  22. 22. Rout S., Jana P., Borra C.R. et al. // Renew. Sust. Energ. Rev. 2025. V. 210. P. 115205. https://doi.org/10.1016/j.rser.2024.115205.
  23. 23. Huang T., Zhu J., Huang X. et al. // Waste Manage. 2022. V. 139. P. 105. https://doi.org/10.1016/j.wasman.2021.12.030
  24. 24. Andersson M., Ljunggren Söderman M., Sandén B.A. // Resour. Pol. 2019. V. 63. Р. 101403. https://doi.org/10.1016/j.resourpol.2019.101403
  25. 25. Heo J., Park J., Park J. H. // Resour. Conserv. Recycl. 2022. V. 179. Р. 106068. https://doi.org/10.1016/j.resconrec.2021.106068
  26. 26. Chakraborty S.C., Qamruzzaman M., Zaman M.W.U. et al. // Proces. Saf. Environm. Protec. 2022. V. 162. P. 230. https://doi.org/10.1016/j.psep.2022.04.011
  27. 27. Петрова Ю.С., Алифханова Л.М.к., Кузнецова К.Я. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 991.
  28. 28. Лосев В.Н., Буйко Е.В., Елсуфъев Е.В. и др. // Журн. неорган. химии. 2006. Т. 51. № 4. С. 617.
  29. 29. Boyacı E., Rodríguez-Lafuente A., Gorynski K. et al. // Anal. Chim. Acta. 2015. V. 873. P. 14. https://doi.org/10.1016/j.aca.2014.12.051
  30. 30. Землякова Е.О., Нестеров Д.В., Мехаев А.В. и др. // Изв. Ак. Наук. С. Хим. 2023. Т. 72. № 12. С. 2842.
  31. 31. Kinnunen V., Peramaki S., Matilainen R. // Spectrochim. Acta, Part B. 2022. V. 193. P. 106431. https://doi.org/10.1016/j.sab.2022.106431
  32. 32. Vikrant K., Kim K.-H. // Chem. Eng. J. 2019. V. 358. P. 264. https://doi.org/10.1016/j.cej.2018.10.022
  33. 33. Torabi E., Abdar A., Lotfian N. et al. // Coord. Chem. Rev. 2024. V. 506. P. 215680. https://doi.org/10.1016/j.ccr.2024.215680
  34. 34. Мельник Е.А., Петрова Ю.С., Неудачина Л.К. и др. // Журн. неорган. химии. 2024. Т. 69. № 6. С. 891.
  35. 35. Petrova Y.S., Alifkhanova L.M.K., Bueva E.I. et al. // React. Funct. Polym. 2022. V. 181. P. 105394. https://doi.org/10.1016/j.reactfunctpolym.2022.105394
  36. 36. Arif M., Raza H., Moussa S.B. et al. // Int. J. Biol. Macromol. 2024. V. 282. P. 136906. https://doi.org/10.1016/j.ijbiomac.2024.136906
  37. 37. Garland N., Gordon R., Hopkins I. et al. // Carbon. 2025. V. 239. P. 120309. https://doi.org/10.1016/j.carbon.2025.120309
  38. 38. Aburabie J., Mohammed S., Hashaikeh R. // Sep. Purif. Technol. 2025. V. 369. P. 133112. https://doi.org/10.1016/j.seppur.2025.133112
  39. 39. Мельник Е.А., Сысолятина А.А., Петрова Ю.С. и др. // Аналит. контр. 2023. Т. 27. № 1. С. 42. https://doi.org/10.15826/analitika.2023.27.1.004
  40. 40. Мельник Е.А., Сысолятина А.А., Холмогорова А.С. и др. // Этал. Станд. Обр. 2022. Т. 18. С. 57. https://doi.org/10.20915/2077-177-2022-18-2-57-71
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library