ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

ВЛИЯНИЕ ДОЛИ И ТИПА ФУНКЦИОНАЛЬНЫХ ГРУПП НА СЕЛЕКТИВНЫЕ СВОЙСТВА МОДИФИЦИРОВАННЫХ ПОЛИ-3-АМИНОПРОПИЛСИЛСЕСКВИОКСАНОВ ПО ОТНОШЕНИЮ К СЕРЕБРУ(I)

Код статьи
S3034560X25090105-1
DOI
10.7868/S3034560X25090105
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 9
Страницы
1180-1187
Аннотация
Исследовано влияние доли и типа функциональных групп на селективные свойства модифицированных поли-3-аминопропилсилесквиоксанов при извлечении серебра(I) из многокомпонентных водных растворов. Сорбенты получены путем модифицирования поли-3-аминопропилсилесквиоксана серосодержащими реагентами при различных температурных режимах, что позволило варьировать соотношение монозамещенных и дизамещенных тиомочевинных групп, а также аминогрупп. Структура сорбента определена методами ИК-спектроскопии и элементного анализа. Установлено, что увеличение доли монозамещенных тиомочевинных групп (от 40 до 75%) в структуре сорбента приводит к повышению степени извлечения и селективности по отношению к серебру(I) в диапазоне рН 1–4. Введение дополнительной стадии нагревания способствует формированию большего количества монозамещенных групп. Сорбция сопутствующих ионов металлов (медь(II), кальций(II), магний(II)) минимальна в широком диапазоне рН. Полученные результаты позволяют целенаправленно регулировать сорбционные и селективные свойства материалов за счет варьирования соотношения функциональных групп на поверхности сорбента.
Ключевые слова
сорбция полисилсесквиоксан модифицирование сорбент N,N'-дифенилтиомочевина
Дата публикации
01.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
22

Библиография

  1. 1. Tang J., Chen Y., Wang S. et al. // Environm. Res. 2022. V. 210. P. 112870. https://doi.org/10.1016/j.envres.2022.112870
  2. 2. Ghomi A.G., Asasian-Kolur N., Sharifian S. et al. // J. Environm. Chem. Eng. 2020. V. 8. № 4. Р. 103996. https://doi.org/10.1016/j.jece.2020.103996
  3. 3. Rocky M.M.H., Rahman I.M.M., Taka S. et al. // Chem. Eng. J. 2024. V. 500. Р. 157040. https://doi.org/10.1016/j.cej.2024.157040
  4. 4. Hameed R., Divyabharathi R., Kumar Yadav K. et al. // Toxicology. 2025. V. 511. P. 154019. https://doi.org/10.1016/j.tox.2024.154019
  5. 5. Li D., Zhang X., Liang X. et al. // Arab. J. Chem. 2023. V. 16. № 7. P. 104836. https://doi.org/10.1016/j.arabjc.2023.104836
  6. 6. Memon M.B., Tao M., Ahmed T. et al. // Proces. Saf. Environm. Protect. 2025. V. 197. Р. 107069. https://doi.org/10.1016/j.psep.2025.107069
  7. 7. Bruez C., Rousseau A., Lefèvre G. et al. // Hydrometallurgy. 2024. V. 225. P. 106279. https://doi.org/10.1016/j.hydromet.2024.106279
  8. 8. Diallo S., Tran L.-H., Larivière D. et al. // Miner. Eng. 2025. V. 222. P. 109157. https://doi.org/10.1016/j.mineng.2024.109157
  9. 9. Russo R.E., Awais M., Fattobene M. et al. // Environm. Tech. Innov. 2024. V. 36. P. 103803. https://doi.org/10.1016/j.eti.2024.103803
  10. 10. Саломатин А.М., Зиновьева И.В., Заходяева Ю.А. и др. // Журн. неорган. химии. 2024. Т. 69. С. 1063.
  11. 11. Cui J., Zhang L. // J. Hazard. Mater. 2008. V. 158. № 2–3. P. 228. https://doi.org/10.1016/j.jhazmat.2008.02.001
  12. 12. Abdelbasir S.M., Hassan S.S.M., Kamel A.H. et al. // Environm. Sci. Pol. Res. 2018. V. 25. Р. 16533. https://doi.org/10.1007/s11356-018-2136-6
  13. 13. Aydoğan S., Motasim M., Ali B. // Heliyon. V. 10. № 2. Р. e24784. https://doi.org/10.1016/j.heliyon.2024.e24784
  14. 14. Kahar I.N.S., Othman N., Idrus-Saidi S.A. et al. // Chem. Eng. Res. Des. 2024. V. 212. P. 434. https://doi.org/10.1016/j.cherd.2024.11.018
  15. 15. Mora C.C., Contreras J.A.R., Villarreal M.C.R. et al. // Heliyon. 2025. V. 11. № 2. Р. e41878. https://doi.org/10.1016/j.heliyon.2025.e41878
  16. 16. Li W., Liu B., Wang S. et al. // Chem. Eng. J. 2024. V. 495. P. 153455. https://doi.org/10.1016/j.cej.2024.153455
  17. 17. Wang X., Wang L., Ma S. et al. // Chem. Eng. J. 2023. V. 451. № 2. P. 138539. https://doi.org/10.1016/j.cej.2022.138539
  18. 18. Han B., Liu Z., Xia D. et al. // Sep. Purif. Technol. 2025. V. 366. P. 132689. https://doi.org/10.1016/j.seppur.2025.132689
  19. 19. Tokalıoğlu Ş., Moghaddam S.T.H., Demir S. // Talanta. 2024. V. 274. P. 126094. https://doi.org/10.1016/j.talanta.2024.126094
  20. 20. Isler, S. Haykiri-Acma H., Özbek N. et al. // Microchem. J. 2025. V. 208. P. 112473. https://doi.org/10.1016/j.microc.2024.112473
  21. 21. Shi C., Huang Y., Han G. et al. // Sep. Purif. Technol. 2025. V. 363. № 2. P. 132137. https://doi.org/10.1016/j.seppur.2025.132137
  22. 22. Rout S., Jana P., Borra C.R. et al. // Renew. Sust. Energ. Rev. 2025. V. 210. P. 115205. https://doi.org/10.1016/j.rser.2024.115205.
  23. 23. Huang T., Zhu J., Huang X. et al. // Waste Manage. 2022. V. 139. P. 105. https://doi.org/10.1016/j.wasman.2021.12.030
  24. 24. Andersson M., Ljunggren Söderman M., Sandén B.A. // Resour. Pol. 2019. V. 63. Р. 101403. https://doi.org/10.1016/j.resourpol.2019.101403
  25. 25. Heo J., Park J., Park J. H. // Resour. Conserv. Recycl. 2022. V. 179. Р. 106068. https://doi.org/10.1016/j.resconrec.2021.106068
  26. 26. Chakraborty S.C., Qamruzzaman M., Zaman M.W.U. et al. // Proces. Saf. Environm. Protec. 2022. V. 162. P. 230. https://doi.org/10.1016/j.psep.2022.04.011
  27. 27. Петрова Ю.С., Алифханова Л.М.к., Кузнецова К.Я. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 991.
  28. 28. Лосев В.Н., Буйко Е.В., Елсуфъев Е.В. и др. // Журн. неорган. химии. 2006. Т. 51. № 4. С. 617.
  29. 29. Boyacı E., Rodríguez-Lafuente A., Gorynski K. et al. // Anal. Chim. Acta. 2015. V. 873. P. 14. https://doi.org/10.1016/j.aca.2014.12.051
  30. 30. Землякова Е.О., Нестеров Д.В., Мехаев А.В. и др. // Изв. Ак. Наук. С. Хим. 2023. Т. 72. № 12. С. 2842.
  31. 31. Kinnunen V., Peramaki S., Matilainen R. // Spectrochim. Acta, Part B. 2022. V. 193. P. 106431. https://doi.org/10.1016/j.sab.2022.106431
  32. 32. Vikrant K., Kim K.-H. // Chem. Eng. J. 2019. V. 358. P. 264. https://doi.org/10.1016/j.cej.2018.10.022
  33. 33. Torabi E., Abdar A., Lotfian N. et al. // Coord. Chem. Rev. 2024. V. 506. P. 215680. https://doi.org/10.1016/j.ccr.2024.215680
  34. 34. Мельник Е.А., Петрова Ю.С., Неудачина Л.К. и др. // Журн. неорган. химии. 2024. Т. 69. № 6. С. 891.
  35. 35. Petrova Y.S., Alifkhanova L.M.K., Bueva E.I. et al. // React. Funct. Polym. 2022. V. 181. P. 105394. https://doi.org/10.1016/j.reactfunctpolym.2022.105394
  36. 36. Arif M., Raza H., Moussa S.B. et al. // Int. J. Biol. Macromol. 2024. V. 282. P. 136906. https://doi.org/10.1016/j.ijbiomac.2024.136906
  37. 37. Garland N., Gordon R., Hopkins I. et al. // Carbon. 2025. V. 239. P. 120309. https://doi.org/10.1016/j.carbon.2025.120309
  38. 38. Aburabie J., Mohammed S., Hashaikeh R. // Sep. Purif. Technol. 2025. V. 369. P. 133112. https://doi.org/10.1016/j.seppur.2025.133112
  39. 39. Мельник Е.А., Сысолятина А.А., Петрова Ю.С. и др. // Аналит. контр. 2023. Т. 27. № 1. С. 42. https://doi.org/10.15826/analitika.2023.27.1.004
  40. 40. Мельник Е.А., Сысолятина А.А., Холмогорова А.С. и др. // Этал. Станд. Обр. 2022. Т. 18. С. 57. https://doi.org/10.20915/2077-177-2022-18-2-57-71
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека