- PII
- S3034560X25090079-1
- DOI
- 10.7868/S3034560X25090079
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 9
- Pages
- 1157-1164
- Abstract
- Two novel bis-cyclometalated iridium(III) complexes with 1,2-diphenylbenzimidazole (pbi) and ancillary 1-methyl-2-(pyridin-2-yl)-1-perimidine (L, complex 1) and ethyl 2-(2-(pyridin-2-yl)-1-perimidin-1-yl)acetate (L, complex 2) were synthesized and characterized by set of physicochemical methods. Comparison of the results of crystal packing analysis and electronic absorption spectroscopy demonstrates that while exclusion of the rigid perimidine system from conjugation does not allow red-shifting of absorption maxima, both complexes exhibit broad absorption up to 600 nm (ε = 27 000 − 800 M cm), comparable to iridium analogs. The results of the study clarify the influence of steric factors on the absorption properties of the complexes and will be used for further development of strongly light-absorbing materials.
- Keywords
- рентгеноструктурный анализ перимидины электронные спектры
- Date of publication
- 01.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 28
References
- 1. Longhi E., De Cola L. Iridium(III) Complexes for OLED Application, in: Iridium(III) Optoelectron. Photonics Appl. Chichester / Wiley, 2017. https://doi.org/10.1002/9781119007166.ch6
- 2. Wang S.-F., Su B.-K., Wang X.-Q. et al. // Nat. Photonics. 2022. V. 16. № 12. P. 843. https://doi.org/10.1038/s41566-022-01079-8
- 3. Wang X., Wu C., Tong K. et al. // Adv. Opt. Mater. 2025. V. 13. № 12. P. 2403273. https://doi.org/10.1002/adom.202403273
- 4. Muñoz-García A.B., Benesperi I., Boschloo G. et al. // Chem. Soc. Rev. 2021. V. 50. № 22. P. 12450. https://doi.org/10.1039/D0CS01336F
- 5. Bodedla G.B., Zhu X., Zhou Z. et al. // Top. Curr. Chem. 2022. V. 380. № 6. P. 49. https://doi.org/10.1007/s41061-022-00404-7
- 6. Légalité F., Escudero D., Pellegrin Y. et al. // Dye. Pigment. 2019. V. 171. P. 107693. https://doi.org/10.1016/j.dyepig.2019.107693
- 7. Tritton D.N., Tang F.-K., Bodedla G.B. et al. // Coord. Chem. Rev. 2022. V. 459. P. 214390. https://doi.org/10.1016/j.ccr.2021.214390
- 8. Bawden J.C., Francis P.S., DiLuzio S. et al. // J. Am. Chem. Soc. 2022. V. 144. № 25. P. 11189. https://doi.org/10.1021/jacs.2c02011
- 9. Ruggeri D., Hoch M., Spataro D. et al. // Chem. Eur. J. 2025. V. 31. № 18. P. E202403309. https://doi.org/10.1002/chem.202403309
- 10. Nykhrikova E.V., Kiseleva M.A., Kalle P. et al. // Inorg. Chem. 2025. V. 64. № 10. P. 5210. https://doi.org/10.1021/acs.inorgchem.5c00155
- 11. Kostova I. // Molecules. 2025. V. 30. № 4. P. 801. https://doi.org/10.3390/molecules30040801
- 12. Krasnov L., Tatarin S., Smirnov D. et al. // Sci. Data. 2024. V. 11. № 1. P. 870. https://doi.org/10.1038/s41597-024-03735-w
- 13. Milaeva E.R. // Russ. J. Coord. Chem. 2024. V. 50. № 12. P. 1043. https://doi.org/10.1134/S1070328424600815
- 14. Aghazada S., Gao P., Yella A. et al. // Inorg. Chem. 2016. V. 55. № 13. P. 6653. https://doi.org/10.1021/acs.inorgchem.6b00842
- 15. Han G., Li G., Huang J. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1. https://doi.org/10.1038/s41467-022-29981-3
- 16. Ботезату А., Токарев С.Д., Федоров Ю.В. и др. // Журн. неорган. химии. 2024. Т. 69. № 12. С. 1805. https://doi.org/10.31857/S0044457X24120133
- 17. Colombo A., Dragonetti C., Fagnani F. et al. // Electronics. 2025. V. 14. № 8. P. 1639. https://doi.org/10.3390/electronics14081639
- 18. Vigueras G., Gasser G., Ruiz J. // Dalton Trans. 2025. V. 54. № 4. P. 1320. https://doi.org/10.1039/D4DT03014A
- 19. Li M., Wang L., You C. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16276. https://doi.org/10.1039/D3DT02629A
- 20. DiLuzio S., Connell T.U., Mdluli V. et al. // J. Am. Chem. Soc. 2022. V. 144. № 3. P. 1431. https://doi.org/10.1021/jacs.1c12059
- 21. De Kreijger S., Schott O., Troian-Gautier L. et al. // Inorg. Chem. 2022. V. 61. № 13. P. 5245. https://doi.org/10.1021/acs.inorgchem.1c03727
- 22. Tatarin S. V., Meshcheriakova E.A., Kozyukhin S.A. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16261. https://doi.org/10.1039/D3DT02789A
- 23. Wang Y., Huang Y., Chen S. et al. // Inorg. Chem. 2023. V. 62. № 19. P. 7212. https://doi.org/10.1021/acs.inorgchem.2c04471
- 24. Звездина С.В., Чижова Н.В., Мамардашвили Н.Ж. // Журн. неорган. химии. 2024. Т. 69. № 11. С. 1565. https://doi.org/10.31857/S0044457X24110064
- 25. Zhang H., Wang H., Tanner K. et al. // Dalton Trans. 2021. V. 50. № 30. P. 10629. https://doi.org/10.1039/d1dt01557e
- 26. Hohlfeld B.F., Gitter B., Kingsbury C.J. et al. // Chem. Eur. J. 2021. V. 27. № 21. P. 6440. https://doi.org/10.1002/chem.202004776
- 27. Sahiba N., Agarwal S. // Top. Curr. Chem. 2020. V. 378. № 4–5. P. 44. https://doi.org/10.1007/s41061-020-00307-5
- 28. Kalle P., Kiseleva M.A., Tatarin S.V. et al. // Molecules. 2022. V. 27. № 10. P. 3201. https://doi.org/10.3390/molecules27103201
- 29. Bobo M.V., Paul A., Robb A.J. et al. // Inorg. Chem. 2020. V. 59. № 9. P. 6351. https://doi.org/10.1021/acs.inorgchem.0c00456
- 30. Bezzubov S.I., Zharinova I.S., Khusyainova A.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 34. P. 3277. https://doi.org/10.1002/ejic.202000372
- 31. Tatarin S.V., Smirnov D.E., Taydakov I.V. et al. // Dalton Trans. 2023. V. 52. № 19. P. 6435. https://doi.org/10.1039/D3DT00200D
- 32. Liao H.-S., Xia X., Hu Y.-X. et al. // Synth. Met. 2022. V. 291. P. 117195. https://doi.org/10.1016/j.synthmet.2022.117195
- 33. Kalle P., Tatarin S.V., Zakharov A.Y. et al. // Acta Crystallogr., Sect. E: Crystallogr. Commun. 2021. V. 77. № 2. P. 96. https://doi.org/10.1107/S205698902100013X
- 34. Смирнов Д.Е., Татарин С.В., Киселева М.А. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1202. https://doi.org/10.31857/S0044457X23601049
- 35. Sheldrick G.M. // SADABS. Version 2008/1. 2008. Bruker AXS Inc. Germany.
- 36. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- 37. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/s2053229614024218
- 38. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/s0021889808042726
- 39. Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
- 40. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
- 41. Rowland R.S., Taylor R. // J. Phys. Chem. 1996. V. 100. № 18. P. 7384. https://doi.org/10.1021/jp953141+
- 42. Bezzubov S.I., Doljenko V.D., Troyanov S.I. et al. // Inorg. Chim. Acta. 2014. V. 415. P. 22. https://doi.org/10.1016/j.ica.2014.02.024