RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

ANALYSIS OF CLOSO-DECABORATE ANION AND ITS DERIVATIVES BY CAPILLARY ZONE ELECTROPHORESIS

PII
S3034560X25090063-1
DOI
10.7868/S3034560X25090063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 9
Pages
1148-1156
Abstract
Boron cluster compounds are inorganic polyhedral structures used in various fields, they have a wide range of different types of bioactivity and are perspective compounds for boron neutron capture therapy of cancer. Therefore, they require the development of various analytical techniques for qualitative and quantitative analysis and determination of their properties. Capillary electrophoresis (CE) is an interesting, universal method for analysis of charged substances. However, there is a fairly limited number of boron cluster compounds studies using CE. Here reports the possibility of a technically simple method of capillary zone electrophoresis analysis of boron clusters [BH] and some of its derivatives, as well as the [BH]. The possibility of anions analysis in normal and reverse polarity separation modes in the absence of capillary surface modifiers or capillary wall polymer coating has been demonstrated. Electrophoretic mobilities were determined for analyzed compounds. The presented work is a clear example of the fact that capillary electrophoresis can serve as a simple and convenient method for soluble and partially water-soluble boron cluster compounds analysis.
Keywords
бораты кластерные соединения электрофорез электрофоретическая подвижность обратная полярность
Date of publication
01.09.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Mahfouz N., Ghaida F.A., El Hajj Z. et al. // Chemistryselect. 2022. V. 7. № 21. P. e202200770. https://doi.org/10.1002/slct.202200770
  2. 2. Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
  3. 3. Mukherjee S., Thilagar P. // Chem. Commun. 2016. V. 52. № 6. P. 1070. https://doi.org/10.1039/c5cc08213g
  4. 4. Guo L., Yu X., Tu D. et al. // Chem. A Eur. J. 2022. V. 28. № 33. P. e202200303. https://doi.org/10.1002/chem.202200303
  5. 5. Nikiforova S.E., Khan N.A., Kubasov A.S. et al. // Crystals. 2023. V. 13. № 10. P. 1449. https://doi.org/10.3390/cryst13101449
  6. 6. Korolenko S.E., Zhuravlev K.P., Tsaryuk V.I. et al. // J. Lumin. 2021. V. 237. P. 118156. https://doi.org/10.1016/j.jlumin.2021.118156
  7. 7. Tong D., Wang H., Chen L. et al. // High Perform. Polym. 2019. V. 31. № 6. P. 694. https://doi.org/10.1177/0954008318788389
  8. 8. Yue J., Li Y., Li H. et al. // Rsc. Adv. 2015. V. 5. № 119. P. 98010. https://doi.org/10.1039/c5ra15743a
  9. 9. Turyshev E.S., Kopytin A.V., Zhizhin K.Y. et al. // Talanta. 2022. V. 241. P. 123239. https://doi.org/10.1016/j.talanta.2022.123239
  10. 10. Kopytin A.V., Turyshev E.S., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 1. P. 6. https://doi.org/10.1134/S0036023622700103
  11. 11. Jacob L., Rzeszotarska E., Kaszyński P. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 32. P. 3083. https://doi.org/10.1002/ejic.202000456
  12. 12. Leśnikowski Z.J. // Expert Opin. Drug Discov. 2016. V. 11. № 6. P. 569. https://doi.org/10.1080/17460441.2016.1174687
  13. 13. Avdeeva V.V., Malinina E.A., Zhizhin K.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 28. https://doi.org/10.1134/S0036023622010028
  14. 14. Das B.C., Nandwana N.K., Das S. et al. // Molecules. 2022. V. 27. № 9. P. 2615. https://doi.org/10.3390/molecules27092615
  15. 15. Messner K., Vuong B., Tranmer G.K. // Pharmaceuticals. 2022. V. 15. № 3. P. 263. https://doi.org/10.3390/ph15030264
  16. 16. Fink K., Uchman M. // Coord. Chem. Rev. 2021. V. 431. P. 213684. https://doi.org/10.1016/j.ccr.2020.213684
  17. 17. Bogucka-Kocka A., Kołodziej P., Makuch-Kocka A. et al. // Chem. Commun. 2022. V. 58. № 15. P. 2528. https://doi.org/10.1039/d1cc07075d
  18. 18. Wang S., Ren Y., Wang Z. et al. // Expert Opin. Drug Discov. 2022. V. 17. № 12. P. 1329. https://doi.org/10.1080/17460441.2023.2153829
  19. 19. Barba-Bon A., Salluce G., Lostalé-Seijo I. et al. // Nature. 2022. V. 603. № 7902. P. 637. https://doi.org/10.1038/s41586-022-04413-w
  20. 20. Hu X.-Y., Guo D.-S. // Angew. Chem. Int. Ed. 2022. V. 61. № 26. P. e202204979. https://doi.org/10.1002/anie.202204979
  21. 21. Lesnikowski Z.J. // Collect. Czechoslov. Chem. Commun. 2007. V. 72. № 12. P. 1646. https://doi.org/10.1135/cccc20071646
  22. 22. Purohit M., Kumar M. // Mater. Today Proc. 2022. https://doi.org/10.1016/j.matpr.2022.12.181
  23. 23. Mahmoud B.S., Alamri A.H., McConville C. // Cancers (Basel). 2020. V. 12. № 1. P. 175. https://doi.org/10.3390/cancers12010175
  24. 24. Fithroni A.B., Ohtsuki T., Matsuura E. et al. // Cells. 2022. V. 11. № 20. P. 3307. https://doi.org/10.3390/cells11203307
  25. 25. Kaniowski D., Suwara J., Ebenryter-Olbińska K. et al. // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 14793. https://doi.org/10.3390/ijms232314793
  26. 26. Plesek J. // Chem. Rev. 1992. V. 92. № 2. P. 269. https://doi.org/10.1021/cr00010a005
  27. 27. Kumar R., Rathore A.S., Guttman A. // Electrophoresis. 2022. V. 43. № 1–2. P. 143. https://doi.org/10.1002/elps.202100182
  28. 28. Palmblad M., van Eck N.J., Bergquist J. // Trac Trends Anal. Chem. 2023. V. 159. P. 116899. https://doi.org/10.1016/j.trac.2022.116899
  29. 29. Ermolenko Y., Nazarova N., Belov A. et al. // J. Drug Deliv. Sci. Technol. 2022. V. 70. P. 103220. https://doi.org/10.1016/j.jddst.2022.103220
  30. 30. Wang M., Liu W., Tan S. et al. // J. Sep. Sci. 2022. V. 45. № 11. P. 1918. https://doi.org/10.1002/jssc.202100727
  31. 31. Van Schepdael A. // Trac Trends Anal. Chem. 2023. V. 160. P. 116992. https://doi.org/10.1016/j.trac.2023.116992
  32. 32. Kostal V., Arriaga E.A. // Electrophoresis. 2008. V. 29. № 12. P. 2578. https://doi.org/10.1002/elps.200700917
  33. 33. Ibáñez C., Acunha T., Valdés A. et al. Capillary electrophoresis in food and foodomics / Springer, 2016. https://doi.org/10.1007/978-1-4939-6403-1_22
  34. 34. Dong Y. // Trends Food Sci. Technol. 1999. V. 10. № 3. P. 87. https://doi.org/10.1016/S0924-2244 (99)00031-X
  35. 35. Parvez H., Caudy P., Parvez S. et al. Capill. Electroph. Biotech. Environ. Anal. / CRC Press, London, 2023. https://doi.org/10.1201/9780429070280
  36. 36. Riu J., Barceló D. // Tech. Inst. Anal. Chem. 2000. V. 21. P. 739. https://doi.org/10.1016/S0167-9244 (00)80023-2
  37. 37. Slavíček V., Grüner B., Vespalec R. // J. Chromatogr. A. 2003. V. 984. № 1. P. 121. https://doi.org/10.1016/S0021-9673 (02)01816-2
  38. 38. Teixidor F., Laromaine A., Viñas C. et al. // Dalton Trans. 2008. № 3. P. 345. https://doi.org/10.1039/b715362g
  39. 39. Vítová L., Fojt L., Vespalec R. // J. Chromatogr. A. 2014. V. 1338. P. 174. https://doi.org/10.1016/j.chroma.2014.02.060
  40. 40. Horáková H., Vespalec R. // Electrophoresis. 2007. V. 28. № 20. P. 3639. https://doi.org/10.1002/elps.200600814
  41. 41. Valeri A.L., Kremser L., Kenndler E. et al. // Electrophoresis. 2008. V. 29. № 8. P. 1658. https://doi.org/10.1002/elps.200700815
  42. 42. Williams B.A., Vigh G. // Anal. Chem. 1996. V. 68. № 7. P. 1174. https://doi.org/10.1021/ac950968r
  43. 43. Holub J., El Anwar S., Grüner B. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 38. P. 4499. https://doi.org/10.1002/ejic.201700651
  44. 44. El Anwar S., Holub J., Tok O. et al. // J. Organomet. Chem. 2018. V. 865. P. 189. https://doi.org/10.1016/j.jorganchem.2018.02.050
  45. 45. Kubasov A.S., Golubev A.V., Bykov A.Y. et al. // J. Mol. Struct. 2021. V. 1241. P. 130591. https://doi.org/10.1016/j.molstruc.2021.130591
  46. 46. Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
  47. 47. Matveev E.Y., Levitskaya V.Y., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1928. https://doi.org/10.1134/S0036023622601532
  48. 48. Monti Hughes A., Hu N. // Cancers (Basel). 2023. V. 15. № 16. P. 1491. https://doi.org/10.3390/cancers15164091
  49. 49. Melanson J.E., Baryla N.E., Lucy C.A. // Trac Trends Anal. Chem. 2001. V. 20. № 6–7. P. 365. https://doi.org/10.1016/S0165-9936 (01)00067-X
  50. 50. Kaniansky D., Masár M., Marák J. et al. // J. Chromatogr. A. 1999. V. 834. № 1–2. P. 133. https://doi.org/10.1016/S0021-9673 (98)00789-4
  51. 51. Aupiais J. // J. Solution Chem. 2011. V. 40. № 9. P. 1629. https://doi.org/10.1007/s10953-011-9734-y
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library