RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis of nanosized SnO via chemical precipitation followed by hydrothermal treatment using tin(II) acetate

PII
S3034560X25090059-1
DOI
10.7868/S3034560X25090059
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 9
Pages
1138-1147
Abstract
The paper studies the synthesis process of nanosized tin dioxide obtained by a combination of direct chemical precipitation and hydrothermal treatment using tin(II) acetate as a precursor. A comparative analysis of the chemical composition, microstructure and crystal structure of the samples obtained under different conditions is performed. Thus, the thermal behavior of the obtained powders in the temperature range of 25–1000°C was studied using synchronous thermal analysis (TGA/DSC); the set of functional groups in the powders was studied using IR spectroscopy; X-ray diffraction analysis (XRD) was used to study the crystal structure of the powders and determine the size of the coherent scattering region. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the effect of hydrothermal treatment on the size of primary particles and agglomerates formed on their basis is shown. It was found that during hydrothermal treatment, the primary particles enlarge from 2.2 ± 0.4 to 2.6 ± 0.6 nm, while the microstructure of the samples becomes more uniform and the size of the agglomerates decreases from 42 ± 12 to 40 ± 8 nm. The morphology of the films formed using the obtained nanopowders was studied using atomic force microscopy (AFM). Within the framework of AFM, Kelvin probe force microscopy (KPFM) was used to construct surface potential distribution maps, as well as to estimate the electron work function from the surface of the materials.
Keywords
диоксид олова оксид олова(IV) ацетат олова(II) химическое осаждение гидротермальная обработка нанопорошок
Date of publication
01.09.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856. https://doi.org/10.1016/j.jallcom.2024.176856
  2. 2. Fisenko N.A., Solomatov I.A., Simonenko N.P. et al. // Sensors. 2022. V. 22. № 24. P. 9800. https://doi.org/10.3390/s22249800
  3. 3. Симоненко Е.П., Мокрушин А.С., Нагорнов И.А. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 634. https://doi.org/10.31857/S0044457X24040185
  4. 4. Симоненко Т.Л., Дудорова Д.А., Симоненко Н.П. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. С. 1849. https://doi.org/10.31857/S0044457X23601591
  5. 5. Захарова Г.С., Фаттахова З.А., Трофимов А.А. // Журн. неорган. химии. 2024. Т. 69. С. 1785. https://doi.org/10.31857/S0044457X24120116
  6. 6. Chen Y., Meng Q., Zhang L. et al. // J. Energy Chem. 2019. V. 35. P. 144. https://doi.org/10.1016/j.jechem.2018.11.011
  7. 7. Dou M., Persson C. // J. Appl. Phys. 2013. V. 113. № 8. P. 83703. https://doi.org/10.1063/1.4793273
  8. 8. Zhang X., Rui Y., Wang Y. et al. // J. Power Sources. 2018. V. 402. P. 460. https://doi.org/10.1016/j.jpowsour.2018.09.072
  9. 9. Moustafid T.El., Cachet H., Tribollet B. et al. // Electrochimica Acta. 2002. V. 47. P. 1209. https://doi.org/10.1016/S0013-4686 (01)00845-3
  10. 10. Manifacier J.-C., Szepessy L., Bresse J.F. et al. // Mater. Res. Bull. 1979. V. 14. № 2. P. 757. https://doi.org/10.1051/rphysap:019780013012075700
  11. 11. Wang A., Bushick K., Pant N. et al. // Appl. Phys. Lett. 2024. V. 124. № 17. P. 172103. https://doi.org/10.1063/5.0198885
  12. 12. Gorley P.M., Khomyak V.V., Bilichuk S.V. et al. // Materials Science and Engineering: B. 2005. V. 118. № 1. P. 160. https://doi.org/10.1016/j.mseb.2004.12.026
  13. 13. Erken Ö., Gümüş C. // Adıyaman University Journal of Science. 2018. V. 8. № 2. P. 141. https://dergipark.org.tr/en/pub/adyujsci/issue/42366/466133#article_cite
  14. 14. Serin T., Serin N., Karadeniz S. et al. // J. Non-Cryst. Solids. 2006. V. 352. № 3. P. 209. https://doi.org/10.1016/j.jnoncrysol.2005.11.031
  15. 15. Uematsu K., Mizutani N., Kato M. // J. Mater. Sci. 1987. V. 22. P. 915. https://doi.org/10.1007/BF01103529
  16. 16. Boujnah M., Ennaceri H., Belasfar K. et al. // Proceedings of 2016 International Renewable and Sustainable Energy Conference. 2016. P. 229. https://doi.org/10.1109/IRSEC.2016.7983960
  17. 17. Tadeev A.V., Delabouglise G., Labeau M. // Thin Solid Films. 1999. V. 337. № 1. P. 163. https://doi.org/10.1016/S0040-6090 (98)01392-3
  18. 18. Pandit N.A., Ahmad T. // Molecules. 2022. V. 27. № 20. P. 7038. https://doi.org/10.3390/molecules27207038
  19. 19. He T., Liu W., Lv T. et al. // Sens. Actuators, B: Chem. 2021. V. 329. P. 129275. https://doi.org/10.1016/j.snb.2020.129275
  20. 20. Choi M.S., Mirzaei A., Na H.G. et al. // Sens. Actuators, B: Chem. 2021. V. 340. P. 129984. https://doi.org/10.1016/j.snb.2021.129984
  21. 21. Sharma B., Sharma A., Myung J.ha // Sens. Actuators, B: Chem. 2021. V. 331. P. 129464. https://doi.org/10.1016/j.snb.2021.129464
  22. 22. Kedara Shivasharma T., Sahu R., Rath M.C. et al. // Chem. Eng. J. 2023. V. 477. P. 147191. https://doi.org/10.1016/j.cej.2023.147191
  23. 23. Cao J., Zhao T., Li X. et al. // J. Energ. Storag. 2025. V. 131. P. 117582. https://doi.org/10.1016/j.est.2025.117582
  24. 24. Yadava Y.P., Denicoló G., Arias A.C. et al. // Mater. Chem. Phys. 1997. V. 48. P. 263. https://doi.org/10.1016/s0254-0584 (96)01899-8.
  25. 25. Yu C., Zou Q., Wang Q. et al. // Nat. Energy. 2023. V. 8. № 10. P. 1119. https://doi.org/10.1038/s41560-023-01331-7
  26. 26. Lee J.H., You Y.J., Saeed M.A. et al. // NPG Asia Mater. 2021. V. 13. № 1. P. 1. https://doi.org/10.1038/s41427-021-00310-2
  27. 27. Dahl P.I., Barnett A.O., Monterrubio F.A. et al. // Tin Oxide Materials. 2020. P. 379. https://doi.org/10.1016/b978-0-12-815924-8.00013-x
  28. 28. Andersen S.M., Nørgaard C.F., Larsen M.J. et al. // J. Power Sources. 2015. V. 273. P. 158. https://doi.org/10.1016/j.jpowsour.2014.09.051
  29. 29. Cognard G., Ozouf G., Beauger C. et al. // Appl. Catal. B. 2017. V. 201. P. 381. https://doi.org/10.1016/j.apcatb.2016.08.010
  30. 30. Ozouf G., Beauger C. // J. Mater. Sci. 2016. V. 51. № 11. P. 5305. https://doi.org/10.1007/s10853-016-9833-7
  31. 31. Tsai D.C., Kuo B.H., Chen H.P. et al. // Sci. Rep. 2023. V. 13. № 1. P. 1. https://doi.org/10.1038/s41598-023-50080-w
  32. 32. Tazikeh S., Akbari A., Talebi A. et al. // Mat. Science- Poland. 2014. V. 32. № 1. P. 98. https://doi.org/10.2478/s13536-013-0164-y
  33. 33. Rifai A., Iqbal M., Nugraha et al. // AIP Conf. Proc. 2011. P. 231. https://doi.org/10.1063/1.3667263
  34. 34. Shahzad N., Ali N., Shahid A. et al. // Dig. J. Nanomater. Biostruct. 2021. V. 16. № 1. P. 41. https://doi.org/10.15251/DJNB.2021.161.41
  35. 35. Liu J.-H. et al. // International Journal on Smart Sensing and Intelligent Systems. Exeley Inc. 2012. V. 5. № 1. P. 191. https://doi.org/10.21307/IJSSIS-2017-477
  36. 36. Acarbaş Ö., Suvaci E., Doǧan A. // Ceram. Int. 2007. V. 33. № 4. P. 537. https://doi.org/10.1016/j.ceramint.2005.10.024
  37. 37. Kim K.W., Cho P.S., Lee J.H. et al. // J. Electroceram. 2006. V. 17. P. 895. https://doi.org/10.1007/s10832-006-7670-9
  38. 38. Nagirnyak S.V., Lutz V.A., Dontsova T.A. et al. // Nanoscale Res. Lett. 2016. V. 11. № 343. P. 1. https://doi.org/10.1186/s11671-016-1547-x
  39. 39. Zhao Y., Dong G., Duan L. et al. // RSC Adv. 2012. V. 2. № 12. P. 5307. https://doi.org/10.1039/c2ra00764a
  40. 40. Agashe C., Aiyer R.C., Garaje A. // Int. J. Appl. Ceram. Technol. 2008. V. 5. № 2. P. 181. https://doi.org/10.1111/j.1744-7402.2008.02196.x
  41. 41. Shaposhnik A.A., Sizask E.A., et al. // Сорбционные и хроматографические процессы. 2014. V. 14. № 4. P. 674.
  42. 42. Agnieszka M., Majchrzycki Ł., Marciniak P. et al. // Chemik. 2013. V. 67. № 1. P. 1207.
  43. 43. Moghadam M.B., Zebarjad S.M., Emampour J.S. et al. // Particulate Science and Technology. 2013. V. 31. № 1. P. 66. https://doi.org/10.1080/02726351.2011.647383
  44. 44. Kim J.W., Choi J., Hong S.J. et al. // Journal of the Korean Physical Society. 2010. V. 57. № 61. P. 1794. https://doi.org/10.3938/jkps.57.1794
  45. 45. Kirszensztejn P., Szymkowiak A., Marciniak P. et al. // Appl. Catal. A Gen. 2003. V. 245. № 1. P. 159. https://doi.org/10.1016/S0926-860X (02)00651-8
  46. 46. Li J., Chen C., Li J. et al. // Journal of Materials Science: Materials in Electronics. 2020. V. 31. № 19. P. 16539. https://doi.org/10.1007/s10854-020-04208-7
  47. 47. Amalric-Popescu D., Bozon-Verduraz F. // Catalysis Today. 2001. V. 70. № 1. P. 139. https://doi.org/10.1016/S0920-5861 (01)00414-X
  48. 48. Campo C.M., Rodríguez J.E., Ramírez A.E. // Heliyon. 2016. V. 2. № 5. P. 1. https://doi.org/10.1016/j.heliyon.2016.e00112
  49. 49. Shahanshahi S.Z., Mosivand S. // Appl. Phys. A Mater. Sci. Process. 2019. V. 125. № 9. P. 1. https://doi.org/10.1007/s00339-019-2949-2
  50. 50. Chandane W., Gajare S., Kagne R. et al. // Research on Chemical Intermediates. 2022. V. 48. № 4. P. 1439. https://doi.org/10.1007/s11164-022-04670-4
  51. 51. Wang Q., Peng C., Du L. et al. // Adv. Mater. Interfaces. 2020. V. 7. № 4. P. 1901866. https://doi.org/10.1002/admi.201901866
  52. 52. Gubbala S., Russell H.B., Shah H. et al. // Energ. Environ. Sci. 2009. V. 2. № 12. P. 1302. https://doi.org/10.1039/b910174h
  53. 53. Fang X., Yan J., Hu L. et al. // Adv. Funct. Mater. 2012. V. 22. № 8. P. 1613. https://doi.org/10.1002/adfm.201102196
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library