- PII
- S3034560X25090059-1
- DOI
- 10.7868/S3034560X25090059
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 9
- Pages
- 1138-1147
- Abstract
- The paper studies the synthesis process of nanosized tin dioxide obtained by a combination of direct chemical precipitation and hydrothermal treatment using tin(II) acetate as a precursor. A comparative analysis of the chemical composition, microstructure and crystal structure of the samples obtained under different conditions is performed. Thus, the thermal behavior of the obtained powders in the temperature range of 25–1000°C was studied using synchronous thermal analysis (TGA/DSC); the set of functional groups in the powders was studied using IR spectroscopy; X-ray diffraction analysis (XRD) was used to study the crystal structure of the powders and determine the size of the coherent scattering region. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the effect of hydrothermal treatment on the size of primary particles and agglomerates formed on their basis is shown. It was found that during hydrothermal treatment, the primary particles enlarge from 2.2 ± 0.4 to 2.6 ± 0.6 nm, while the microstructure of the samples becomes more uniform and the size of the agglomerates decreases from 42 ± 12 to 40 ± 8 nm. The morphology of the films formed using the obtained nanopowders was studied using atomic force microscopy (AFM). Within the framework of AFM, Kelvin probe force microscopy (KPFM) was used to construct surface potential distribution maps, as well as to estimate the electron work function from the surface of the materials.
- Keywords
- диоксид олова оксид олова(IV) ацетат олова(II) химическое осаждение гидротермальная обработка нанопорошок
- Date of publication
- 01.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 30
References
- 1. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856. https://doi.org/10.1016/j.jallcom.2024.176856
- 2. Fisenko N.A., Solomatov I.A., Simonenko N.P. et al. // Sensors. 2022. V. 22. № 24. P. 9800. https://doi.org/10.3390/s22249800
- 3. Симоненко Е.П., Мокрушин А.С., Нагорнов И.А. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 634. https://doi.org/10.31857/S0044457X24040185
- 4. Симоненко Т.Л., Дудорова Д.А., Симоненко Н.П. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. С. 1849. https://doi.org/10.31857/S0044457X23601591
- 5. Захарова Г.С., Фаттахова З.А., Трофимов А.А. // Журн. неорган. химии. 2024. Т. 69. С. 1785. https://doi.org/10.31857/S0044457X24120116
- 6. Chen Y., Meng Q., Zhang L. et al. // J. Energy Chem. 2019. V. 35. P. 144. https://doi.org/10.1016/j.jechem.2018.11.011
- 7. Dou M., Persson C. // J. Appl. Phys. 2013. V. 113. № 8. P. 83703. https://doi.org/10.1063/1.4793273
- 8. Zhang X., Rui Y., Wang Y. et al. // J. Power Sources. 2018. V. 402. P. 460. https://doi.org/10.1016/j.jpowsour.2018.09.072
- 9. Moustafid T.El., Cachet H., Tribollet B. et al. // Electrochimica Acta. 2002. V. 47. P. 1209. https://doi.org/10.1016/S0013-4686 (01)00845-3
- 10. Manifacier J.-C., Szepessy L., Bresse J.F. et al. // Mater. Res. Bull. 1979. V. 14. № 2. P. 757. https://doi.org/10.1051/rphysap:019780013012075700
- 11. Wang A., Bushick K., Pant N. et al. // Appl. Phys. Lett. 2024. V. 124. № 17. P. 172103. https://doi.org/10.1063/5.0198885
- 12. Gorley P.M., Khomyak V.V., Bilichuk S.V. et al. // Materials Science and Engineering: B. 2005. V. 118. № 1. P. 160. https://doi.org/10.1016/j.mseb.2004.12.026
- 13. Erken Ö., Gümüş C. // Adıyaman University Journal of Science. 2018. V. 8. № 2. P. 141. https://dergipark.org.tr/en/pub/adyujsci/issue/42366/466133#article_cite
- 14. Serin T., Serin N., Karadeniz S. et al. // J. Non-Cryst. Solids. 2006. V. 352. № 3. P. 209. https://doi.org/10.1016/j.jnoncrysol.2005.11.031
- 15. Uematsu K., Mizutani N., Kato M. // J. Mater. Sci. 1987. V. 22. P. 915. https://doi.org/10.1007/BF01103529
- 16. Boujnah M., Ennaceri H., Belasfar K. et al. // Proceedings of 2016 International Renewable and Sustainable Energy Conference. 2016. P. 229. https://doi.org/10.1109/IRSEC.2016.7983960
- 17. Tadeev A.V., Delabouglise G., Labeau M. // Thin Solid Films. 1999. V. 337. № 1. P. 163. https://doi.org/10.1016/S0040-6090 (98)01392-3
- 18. Pandit N.A., Ahmad T. // Molecules. 2022. V. 27. № 20. P. 7038. https://doi.org/10.3390/molecules27207038
- 19. He T., Liu W., Lv T. et al. // Sens. Actuators, B: Chem. 2021. V. 329. P. 129275. https://doi.org/10.1016/j.snb.2020.129275
- 20. Choi M.S., Mirzaei A., Na H.G. et al. // Sens. Actuators, B: Chem. 2021. V. 340. P. 129984. https://doi.org/10.1016/j.snb.2021.129984
- 21. Sharma B., Sharma A., Myung J.ha // Sens. Actuators, B: Chem. 2021. V. 331. P. 129464. https://doi.org/10.1016/j.snb.2021.129464
- 22. Kedara Shivasharma T., Sahu R., Rath M.C. et al. // Chem. Eng. J. 2023. V. 477. P. 147191. https://doi.org/10.1016/j.cej.2023.147191
- 23. Cao J., Zhao T., Li X. et al. // J. Energ. Storag. 2025. V. 131. P. 117582. https://doi.org/10.1016/j.est.2025.117582
- 24. Yadava Y.P., Denicoló G., Arias A.C. et al. // Mater. Chem. Phys. 1997. V. 48. P. 263. https://doi.org/10.1016/s0254-0584 (96)01899-8.
- 25. Yu C., Zou Q., Wang Q. et al. // Nat. Energy. 2023. V. 8. № 10. P. 1119. https://doi.org/10.1038/s41560-023-01331-7
- 26. Lee J.H., You Y.J., Saeed M.A. et al. // NPG Asia Mater. 2021. V. 13. № 1. P. 1. https://doi.org/10.1038/s41427-021-00310-2
- 27. Dahl P.I., Barnett A.O., Monterrubio F.A. et al. // Tin Oxide Materials. 2020. P. 379. https://doi.org/10.1016/b978-0-12-815924-8.00013-x
- 28. Andersen S.M., Nørgaard C.F., Larsen M.J. et al. // J. Power Sources. 2015. V. 273. P. 158. https://doi.org/10.1016/j.jpowsour.2014.09.051
- 29. Cognard G., Ozouf G., Beauger C. et al. // Appl. Catal. B. 2017. V. 201. P. 381. https://doi.org/10.1016/j.apcatb.2016.08.010
- 30. Ozouf G., Beauger C. // J. Mater. Sci. 2016. V. 51. № 11. P. 5305. https://doi.org/10.1007/s10853-016-9833-7
- 31. Tsai D.C., Kuo B.H., Chen H.P. et al. // Sci. Rep. 2023. V. 13. № 1. P. 1. https://doi.org/10.1038/s41598-023-50080-w
- 32. Tazikeh S., Akbari A., Talebi A. et al. // Mat. Science- Poland. 2014. V. 32. № 1. P. 98. https://doi.org/10.2478/s13536-013-0164-y
- 33. Rifai A., Iqbal M., Nugraha et al. // AIP Conf. Proc. 2011. P. 231. https://doi.org/10.1063/1.3667263
- 34. Shahzad N., Ali N., Shahid A. et al. // Dig. J. Nanomater. Biostruct. 2021. V. 16. № 1. P. 41. https://doi.org/10.15251/DJNB.2021.161.41
- 35. Liu J.-H. et al. // International Journal on Smart Sensing and Intelligent Systems. Exeley Inc. 2012. V. 5. № 1. P. 191. https://doi.org/10.21307/IJSSIS-2017-477
- 36. Acarbaş Ö., Suvaci E., Doǧan A. // Ceram. Int. 2007. V. 33. № 4. P. 537. https://doi.org/10.1016/j.ceramint.2005.10.024
- 37. Kim K.W., Cho P.S., Lee J.H. et al. // J. Electroceram. 2006. V. 17. P. 895. https://doi.org/10.1007/s10832-006-7670-9
- 38. Nagirnyak S.V., Lutz V.A., Dontsova T.A. et al. // Nanoscale Res. Lett. 2016. V. 11. № 343. P. 1. https://doi.org/10.1186/s11671-016-1547-x
- 39. Zhao Y., Dong G., Duan L. et al. // RSC Adv. 2012. V. 2. № 12. P. 5307. https://doi.org/10.1039/c2ra00764a
- 40. Agashe C., Aiyer R.C., Garaje A. // Int. J. Appl. Ceram. Technol. 2008. V. 5. № 2. P. 181. https://doi.org/10.1111/j.1744-7402.2008.02196.x
- 41. Shaposhnik A.A., Sizask E.A., et al. // Сорбционные и хроматографические процессы. 2014. V. 14. № 4. P. 674.
- 42. Agnieszka M., Majchrzycki Ł., Marciniak P. et al. // Chemik. 2013. V. 67. № 1. P. 1207.
- 43. Moghadam M.B., Zebarjad S.M., Emampour J.S. et al. // Particulate Science and Technology. 2013. V. 31. № 1. P. 66. https://doi.org/10.1080/02726351.2011.647383
- 44. Kim J.W., Choi J., Hong S.J. et al. // Journal of the Korean Physical Society. 2010. V. 57. № 61. P. 1794. https://doi.org/10.3938/jkps.57.1794
- 45. Kirszensztejn P., Szymkowiak A., Marciniak P. et al. // Appl. Catal. A Gen. 2003. V. 245. № 1. P. 159. https://doi.org/10.1016/S0926-860X (02)00651-8
- 46. Li J., Chen C., Li J. et al. // Journal of Materials Science: Materials in Electronics. 2020. V. 31. № 19. P. 16539. https://doi.org/10.1007/s10854-020-04208-7
- 47. Amalric-Popescu D., Bozon-Verduraz F. // Catalysis Today. 2001. V. 70. № 1. P. 139. https://doi.org/10.1016/S0920-5861 (01)00414-X
- 48. Campo C.M., Rodríguez J.E., Ramírez A.E. // Heliyon. 2016. V. 2. № 5. P. 1. https://doi.org/10.1016/j.heliyon.2016.e00112
- 49. Shahanshahi S.Z., Mosivand S. // Appl. Phys. A Mater. Sci. Process. 2019. V. 125. № 9. P. 1. https://doi.org/10.1007/s00339-019-2949-2
- 50. Chandane W., Gajare S., Kagne R. et al. // Research on Chemical Intermediates. 2022. V. 48. № 4. P. 1439. https://doi.org/10.1007/s11164-022-04670-4
- 51. Wang Q., Peng C., Du L. et al. // Adv. Mater. Interfaces. 2020. V. 7. № 4. P. 1901866. https://doi.org/10.1002/admi.201901866
- 52. Gubbala S., Russell H.B., Shah H. et al. // Energ. Environ. Sci. 2009. V. 2. № 12. P. 1302. https://doi.org/10.1039/b910174h
- 53. Fang X., Yan J., Hu L. et al. // Adv. Funct. Mater. 2012. V. 22. № 8. P. 1613. https://doi.org/10.1002/adfm.201102196