RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

A NEW VIEW ON HETEROVALENT ISOMORPHIC SUBSTITUTION OF Zr IN NaZrSiPO BY TRIVALENT ELEMENTS

PII
S3034560X25090047-1
DOI
10.7868/S3034560X25090047
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 9
Pages
1127-1137
Abstract
The partial substitution of Zr in siliconposphate NaZrSiPO by a trivalent element has been investigated in this work. On the example of Fe-substituted NASICON it is shown that the formed complex does not correspond to the generally accepted formula NaM(III)ZrSiPO, in which electroneutrality of the obtained composition is achieved by charge compensation by additional Na ions. The formation of NaM(III)ZrSiPO complexes was established on the basis of X-ray phase analysis, scanning electron microscopy and refinement of crystal lattice parameters by the Rietveld method. The precursor composition NaM(III)ZrSiPO is excessive in Na and Si for the Fe-substituted complex. Elements that are superstoichiometric for the new crystal lattice are partially incorporated into the main NASICON phase, increasing the parameters of the unit cell, and partially participate in the formation of additional phases: amorphous or crystalline. The amorphous phase is formed at grain boundaries of low dopant compositions. Impurity crystalline phases are formed in high dopant compositions.
Keywords
NASICON железо гетеровалентное замещение микроструктура
Date of publication
01.09.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Ahmad H., Kubra K.T., Butt A. et al. // J. Power Sources. 2023. V. 581. Р. 233518. https://doi.org/10.1016/j.jpowsour.2023.233518
  2. 2. Lu Y., Li L., Zhang Q. et al. // Joule. 2018. V. 2. № 9. P. 1747. https://doi.org/10.1016/j.joule.2018.07.028
  3. 3. Wang Y., Song S., Xu C. et al. // Nano Mater. Sci. 2019. V. 1. № 2. P. 91. https://doi.org/10.1016/j.nanoms.2019.02.007
  4. 4. Singh M.D., Kaur G., Sharma S. et al. // J. Energy Storage. 2021. V. 41. P. 102984. https://doi.org/10.1016/j.est.2021.102984
  5. 5. Li X., Hu E., Wang F. et al. // J. Mater. Chem. A. 2024. V. 12. № 8. P. 4796. https://doi.org/10.1039/D3TA05182J
  6. 6. Zhong C., Deng Y., Hu W. et al. // Chem. Soc. Rev. 2015. V. 44. P. 7484. https://doi.org/10.1039/c5cs00303b
  7. 7. Fergus J.-W. // Solid State Ionics. 2012. V. 227. P. 102. https://doi.org/10.1016/j.ssi.2012.09.019
  8. 8. Jolley A.G., Taylor D.D., Schreiber N.J., Eric D. // J. Am. Ceram. Soc. 2015. V. 98. № 9. P. 2902. https://doi.org/10.1111/jace.13692
  9. 9. Jolley A.G., Cohn G., Hitz G.T., Wachsman E.D. // Ionics. 2015. V. 21. P. 3031. https://doi.org/10.1007/s11581-015-1498-8
  10. 10. Chen D., Luo F., Zhou W., Zhu D. // J. Alloys Compd. 2018. V. 757. P. 348. https://doi.org/10.1016/j.jallcom.2018.05.116
  11. 11. Zhang Z., Zhang Q., Shi J. et al. // Adv. Energy Mater. 2016. V. 7. P. 1601196. https://doi.org/10.1002/aenm.201601196
  12. 12. Zhang Q., Liang F., Qu T. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 423. Р. 012122. https://doi.org/10.1088/1757-899X/423/1/012122
  13. 13. Ma Q., Guin M., Naqash S. et al. // Chem. Mater. 2016. V. 28 Р. 4821. https://doi.org/10.1021/acs.chemmater.6b02059
  14. 14. Khakpour Z. // Electrochim. Acta. 2016. V. 196. Р. 337. https://doi.org/10.1016/j.electacta.2016.02.199
  15. 15. Ruan Y., Song S., Liu J. et al. // Ceram. Int. 2017. V. 43. № 10. P. 7810. https://doi.org/10.1016/j.ceramint.2017.03.095
  16. 16. Fuentes R.O., Figueiredo F.M., Marques F.M.B., Franco J.I. // Solid State Ionics. 2001. V. 140. № 1–2. Р. 173. https://doi.org/10.1016/S0167-2738 (01)00701-9
  17. 17. Samiee M., Radhakrishnan B., Rice Z. et al. // J. Power Sources. 2017. V. 347. P. 229. https://doi.org/10.1016/j.jpowsour.2017.02.042
  18. 18. Yadav P., Bhatnagar M.C. // J. Electroceram. 2013. V. 30. P. 145. https://doi.org/10.1007/s10832-012-9776-6
  19. 19. Xie B., Jiang D., Wu J. et al. // J. Phys. Chem. Solids. 2016. V. 88. P. 104. https://doi.org/10.1016/j.jpcs.2015.10.003
  20. 20. Rao Y.B., Bharathi K.K., Patro L.N. // Solid State Ionics. 2021. V. 366-367. P. 115671. https://doi.org/10.1016/j.ssi.2021.115671
  21. 21. Грищенко Д.Н., Медков М.А. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1042. https://doi.org/10.31857/S0044457X23600366
  22. 22. Squattrito P.J., Rudolf P.R., Jorgensen J.D. et al. // Solid State Ionics. 1988. V. 31. Р. 31.
  23. 23. Subramanian M.A., Rudolf P.R., Clearfield A. // J. Solid State Chem. 1985. V. 60. Р. 172.
  24. 24. Grishchenko D.N., Medkov M.A. // Theor. Found. Chem. Eng. 2024. V. 58. № 2. P. 261. https://doi.org/10.1134/S0040579524700428
  25. 25. Oh J.A.S., He L., Plewa A. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 40125. https://doi.org/10.1021/acsami.9b14986
  26. 26. Wang H., Zhao G., Wang S. et al. // Nanoscale. 2022. V. 14 № 3. P. 823. https://doi.org/10.1039/d1nr06959d
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library