RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

THE IMPACT OF ALKYL CHAIN LENGTH ON THE PROPERTIES OF SiO-BASED AEROGELS

PII
S3034560X25070129-1
DOI
10.7868/S3034560X25070129
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 7
Pages
959-968
Abstract
Modified silica aerogels were obtained by co-gelation of tetramethoxysilane and acylated 3-aminopropyl-trimethoxysilane (with the general formula (MeO)-Si-(CH)-NHCO-R), followed by supercritical drying in CO. Methyl esters of acetic, valeric, pelargonic, and stearic acids were used as acylating agents. The resulting aerogels were characterized using low-temperature nitrogen adsorption, scanning electron microscopy (SEM), and infrared spectroscopy (IR). It was shown that the specific surface area of the aerogels significantly depends on the length of the alkyl substituent in the modified silane and can vary from 40 to 1375 m/g. An increase in the length of the alkyl substituent also leads to increased hydrophobicity of the aerogel, up to the formation of superhydrophobic materials (contact angle is 163.7°).
Keywords
SiO-аэрогели модификация прекурсоров супергидрофобность пористость
Date of publication
15.07.2025
Year of publication
2025
Number of purchasers
0
Views
29

References

  1. 1. Евстропьева С. К., Солдарова В. Л., Сапаровский А. С. и др. // Журн. неорган. химии. 2024. Т. 69. № 3. С. 394. https://doi.org/10.1134/S0036023623603446
  2. 2. Бегильчукова С. В., Насимов А. М., Рузимудоров А. М. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 537. https://doi.org/10.1134/S0036023624600485
  3. 3. Wagh P. B., Begag R., Pajonk G. M. et al. // Mater. Chem. Phys. 1999. V. 57. № 3. P. 214. https://doi.org/10.1016/S0254-0584 (98)00217-X
  4. 4. Durăes L., Maia A., Portugal A. // J. Supercrit. Fluids. 2015. V. 106. P. 85. https://doi.org/10.1016/j.supflu.2015.06.020
  5. 5. Engartner C. R., Grandi S., Feinle A. et al. // Dalton Trans. 2017. V. 46. P. 8809. https://doi.org/10.1039/C7DT005581
  6. 6. Zhang G., Li C., Wang Y. et al. // Gels. 2023. V. 9. № 9. P. 720. https://doi.org/10.3390/gels9090720
  7. 7. Xie L., Wu X., Wang G. et al. // Gels. 2023. V. 9. № 4. P. 317. https://doi.org/10.3390/gels9040317
  8. 8. Li L., Xu T., Zhang F. et al. // Gels. 2023. V. 9. № 9. P. 739. https://doi.org/10.3390/gels9090739
  9. 9. Chen L., Li L., Zhang X. // Nat. Commun. 2025. V. 16. P. 2228. https://doi.org/10.1038/s41467-025-57246-2
  10. 10. Lamy-Mendes A., Torres R. B., Vareda J. P. et al. // Molecules. 2019. V. 24. № 20. P. 3701. https://doi.org/10.3390/molecules24203701
  11. 11. Spyagina N. A., Malkova A. N., Straumal E. A. et al. // J. Porous Mater. 2023. V. 30. P. 449. https://doi.org/10.1007/s10934-022-01357-4
  12. 12. Yorov K. E., Kottsov S. Y., Baranchikov A. E. et al. // J. Sol-Gel Sci. Technol. 2019. V. 92. P. 304. https://doi.org/10.1007/s10971-019-04958-9
  13. 13. Keshavarz L., Ghaani M. R., English N. J. // Molecules. 2021. V. 26. № 16. P. 5023. https://doi.org/10.3390/molecules26165023
  14. 14. Lermontov S. A., Spyagina N. A., Malkova A. N. et al. // RSC Adv. 2016. V. 6. P. 80766. https://doi.org/10.1039/c6ra15444a
  15. 15. Meit P., Wang Q., Mahadik D. B. et al. // Nanomaterials (Basel). 2023. V. 13. № 9. P. 1498. https://doi.org/10.3390/nano13091498
  16. 16. Zhao Z., Pan Y., Yan M. et al. // J. Sol-Gel Sci. Technol. 2024. V. 112. P. 127. https://doi.org/10.1007/s10971-024-06518-2
  17. 17. Yan Q., Feng Z., Luo J. et al. // Energy Buildings. 2022. V. 255. P. 111661. https://doi.org/10.1016/j.enbuild.2021.111661
  18. 18. Yu Y., Guo D., Fang J. // J. Porous. Mat. 2015. V. 22. P. 621. https://doi.org/10.1007/s10934-015-9934-8
  19. 19. Spyagina N. A., Vlasenko N. E., Malkova A. N. et al. // Molecules. 2024. V. 29. № 8. P. 1868. https://doi.org/10.3390/molecules29081868
  20. 20. Hüsing N., Schubert U., Mezei R. et al. // Chem. Mater. 1999. V. 11. № 2. P. 451. https://doi.org/10.1021/cm9807561
  21. 21. Pierre A. C., Pajonk G. M. // Chem. Rev. 2002. V. 102. № 11. P. 4243. https://doi.org/10.1021/cr0101306
  22. 22. Dong H., Brook M. A., Brennan J. D. // J. Mater. Chem. 2005. V. 17. № 11. P. 2807. https://doi.org/10.1021/cm050271c
  23. 23. Borba A., Vareda J. P., Durăes L. et al. // New. J. Chem. 2017. V. 41. № 14. P. 6742. https://doi.org/10.1039/c7nj010827
  24. 24. Baumann T. F., Gash A. E., Chinn S. C. et al. // Chem. Mater. 2005. V. 17. № 2. P. 395. https://doi.org/10.1021/cm048800m
  25. 25. Nadargi D. Y., Rao A. V. // J. Alloys Compd. 2009. V. 467. № 1–2. P. 397. https://doi.org/10.1016/j.jallcom.2007.12.019
  26. 26. Rao A. V. // J. Sol-Gel Sci. Technol. 2019. V. 90. P. 28. https://doi.org/10.1007/s10971-018-4825-5
  27. 27. Rao A. V., Kalesh R. R. // Sci. Technol. Adv. Mater. 2003. V. 4. P. 509. https://doi.org/10.1016/j.stam.2003.12.010
  28. 28. Yamauchi Y., Tenjimbayashi M., Samitsu S. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 35. P. 32381. https://doi.org/10.1021/acsami.9b09524
  29. 29. Wang S., Jiang L. // J. Adv. Mater. 2007. V. 19. № 21. P. 3423. https://doi.org/10.1002/adma.200700934
  30. 30. Rao A. V., Hegde N. D., Hiroshima H. // J. Colloid Interface Sci. 2007. V. 305. № 1. P. 124. https://doi.org/10.1016/j.jcis.2006.09.025
  31. 31. Hrubesh L. W., Coronado P. R., Satcher J. H. Jr. // J. Non-Cryst. Solids. 2001. V. 285. № 1–3. P. 328. https://doi.org/10.1016/S0022-3093 (01)00475-6
  32. 32. Onda T., Shibukhi S., Satoh N. et al. // Langmuir. 1996. V. 12. № 9. P. 2125. https://doi.org/10.1021/la950418o
  33. 33. Mozetic M. // Polymers. 2023. V. 15. № 24. P. 4668. https://doi.org/10.3390/polym15244668
  34. 34. Суми Б. Д. и Горюнов Ю. В. Физико-химические основы смачивания и растекания. М.: Химия, 1976.
  35. 35. Rao A. V., Pajonk G. M., Bhagat S. D. et al. // J. Non-Cryst. Solids. 2004. V. 350. P. 216. https://doi.org/10.1016/j.jnoncrysol.2004.06.034
  36. 36. Rao A. V., Pajonk GM. // J. Non-Cryst. Solids. 2001. V. 285. № 1–3. P. 202. https://doi.org/10.1016/S0022-3093 (01)00454-9
  37. 37. Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
  38. 38. Sai H.Z., Xing L., Xiang J.H. et al. // Key Eng. Mater. 2012. V. 512–515. P. 1625. https://doi.org/10.4028/www.scientific.net/KEM.512-515.1625
  39. 39. Park K.W., Kim J.Y., Seo H.J. et al. // Sci. Rep. 2019. V. 9. P. 13360. https://doi.org/10.1038/s41598-019-50053-y
  40. 40. Chen D., Wang X., Ding W. et al. // Molecules. 2018. V. 23. № 12. P. 3192. https://doi.org/10.3390/molecules23123192
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library