RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

COORDINATION ENVIRONMENT STRATEGY FOR MOLYBDENUM(V) PORPHYRIN COMPLEXES TO IMPROVE THEIR SENSORY PARAMETERS

PII
S3034560X25070078-1
DOI
10.7868/S3034560X25070078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 7
Pages
904-915
Abstract
Molybdenum(V) porphyrin complexes, O=Mo(X)P (P is a substituted porphine, X is a single-charged anionic ligand), show affinity to practically significant organic bases, give an accessible for registration spectral response in the UV-visible region and therefore have prospects as active components of sensor devices. In order to achieve high values of the sensory parameters, the present work analyzes the influence of the composition of the O=Mo(X)P coordination sphere on them by varying the axial ligand X and the substituent in the composition of the equatorial macrocyclic ligand. For this purpose, a complete kinetic description of the reaction with pyridine (Py), a classical example of highly volatile organic compounds (VOCs), proceeding as two consecutive two-way reactions, identification and characterization of the intermediate and final products by UV-visible, H NMR, IR spectroscopy and mass spectrometry, and sensing activity parameters — time and numerical value of the spectral response to the presence of Py and the lower limit of determination of the latter is presented using oxo(5,10,15,20-tetraphenylporphinato)(ethoxy)molybdenum(V) (O=Mo(OEt)TPP) as an example. Using similar data for O=Mo(OH)TPP, O=Mo(OEt)TTP and O=Mo(OEt)TBuPP (TTP and TBuPP are dianions of tetra-4-methyl- and tetra-4-tert-butyl-substituted TPP, respectively), it is shown that the directed formation of the coordination sphere is a means for fine-tuning the sensory properties and that the complex O=Mo(OEt)TPP is the most effective in this capacity.
Keywords
молибден(V)порфирины пиридин кинетика комплексообразования сенсорные свойства
Date of publication
15.07.2025
Year of publication
2025
Number of purchasers
0
Views
45

References

  1. 1. Paolesse R., Nardis S., Monti D. et al. // Chem. Rev. 2017. V. 117. P. 2517. https://doi.org/10.1021/acs.chemrev.6b00361
  2. 2. Taihong Liu, Lüjie Yang, Wan Feng et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 11084. https://doi.org/10.1021/acsami.0c00568
  3. 3. Eyyapan M., Dunbar A.D.F. // Sens. Actuators, B. 2015. V. 206. P. 74. https://doi.org/10.1016/j.snb.2014.09.023
  4. 4. Yuanyuan Ly, Yani Zhang, Yanglong Du et al. // Sensors. 2013. V. 13. P. 15758. https://doi.org/10.3390/s131115758
  5. 5. Lvova L., Di Natale C., Paolesse R. // Sens. Actuators, B. 2013. V. 179. P. 21. https://doi.org/10.1016/j.snb.2012.10.014
  6. 6. Shahrokhian S., Taghani A., Hamzehloei A. et al. // Talanta. 2004. V. 63. P. 371. https://doi.org/10.1016/j.talanta.2003.11.007
  7. 7. Baybars Köksoy, Meryem Aygin, Aylin Çapkin et al. // J. Porphyrins Phthalocyanines. 2018. V. 22. P. 121. https://doi.org/10.1142/S1088424618500153
  8. 8. Li Tian, Binbin Wang, Ruizhan Chen et al. // Microchim. Acta. 2015. V. 182. P. 687. https://doi.org/10.1007/s00604-014-1374-7
  9. 9. Paolesse R., Di Natale C., Burgio M. et al. // Sens. Actuators, B. 2003. V. 95. P. 400. https://doi.org/10.1016/S0925–4005 (03)00534–3
  10. 10. C. Henrique A. Esteves, Bernardo A. Iglesias, Takuji Ogawa et al. // ACS Omega. 2018. V. 3. P. 6476. https://doi.org/10.1021/acsomega.8b00403
  11. 11. Paolesse R., Monti D., Nardis S., Di Natale C. Porphyrin-Based Chemical Sensors. / Eds. Kadish K.M., Smith K.M., Guilard R. Singapore: World Scientific, 2011. https://doi.org/10.1142/7878-vol12
  12. 12. Malinski T. Porphyrin-based Electrochemical Sensors. / Eds. Kadish K.M., Smith K.M., Guilard R. New York: Academic Press, 1999. https://www.sciencedirect.com/book/9780080923901/the-porphyrin-handbook
  13. 13. Hisanobu Ogoshi, Tadashi Mizutani, Takashi Hayashi, Yasuhisa Kuroda. Porphyrins and metalloporphyrins as Receptor Models in Molecular Recognition. / Eds. Kadish K.M., Smith K.M., Guilard R. New York: Academic Press, 1999. https://www.sciencedirect.com/book/9780080923901/the-porphyrin-handbook
  14. 14. Bacoaa T.B., Beaux J.A., Bauvpun A.C. u dp. // Журн. структур. химии. 2023. Т. 64. № 5. С. 1. https://doi.org/10.26902/JSC_id110058
  15. 15. Tunyama M.D., Floaoa T.H., Momopuna E.B. // Коорд. химия. 2005. Т. 31. № 5. С. 380.
  16. 16. Momopuna E.B., Kuwooa H.A., Бичан Н.Г., Ломова Т.Н. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1779. https://doi.org/10.31857/S0044457X22600712
  17. 17. Lomova T.N., Motorina E.V., Bichan N.G. // J. Porphyrins Phthalocyanines. 2022. V. 26. Р. 485. https://doi.org/10.1142/S1088424622500365
  18. 18. Lomova T.N. // Appl. Organomet. Chem. 2021. V. 35. e6254. https://doi.org/10.1002/aoc.6254
  19. 19. Spadawechia J., Ciccerella G., Rella R. // Sens. Actuators. 2005. V. 106. Р. 212. https://doi.org/10.1016/j.snb.2004.08.026
  20. 20. Motorina E.V., Lomova T.N., Klyuev M.V. // Mendeleev Commun. 2018. V. 28. № 4. Р. 426. https://doi.org/10.1016/j.mencom.2018.07.029
  21. 21. Lomova T.N., Motorina E.V., Mozhzhukhina E.G., Gruzdev M.S. // J. Porphyrins Phthalocyanines. 2020. V. 24. Р. 1224. https://doi.org/10.1142/S1088424620500406
  22. 22. Matsuda Y., Murakami Y. // Coord. Chem. Rev. 1988. V. 92. Р. 157.
  23. 23. Gubarev Y.A., Lebedeva N.Sh., Golubev S.N. et al. // Macroheterocycles. 2013. V. 6. Р. 106. https://doi.org/10.6060/mhc120986g
  24. 24. Medforth C.J. // NMR spectroscopy of diamagnetic porphyrinsin. / Kadish K.M., Smith K.M., Guilard R. New York: Acad. Press, 2000.
  25. 25. Goutam N., Sabysachii S. // J. Porphyrins Phthalocyanines. 2014. V. 18. Р. 282. https://doi.org/10.1142/S1088424613501277
  26. 26. Fulmer G.R., Miller A.J.M., Sherden N.H. et al. // Organometallics. 2010. V. 29. Р. 2176. https://doi.org/10.1021/om100106e
  27. 27. Ledon H., Mentzen B. // Inorg. Chim. Acta. 1978. V. 31. Р. L393.
  28. 28. Ledon H., Bonnet M., Brigandat Y., Varescon F. // Inorg. Chem.1980. V. 19. № 11. Р. 3488. https://doi.org/10.1021/ic502130055
  29. 29. Walker FA. // J. Am. Chem. Soc. 1973. V. 95. Р. 1150.
  30. 30. Smirnov V.V., Woller E.K., Di Magno S.G. // Inorg. Chem. 1998. V. 37. № 19. Р. 4971. https://doi.org/10.1021/ic980156o
  31. 31. Зайцева С.В., Зданович С.А., Койфман О.Н. // Журн. неорган. химии. 2015. Т. 60. № 6. С. 836. https://doi.org/10.7868/S0044457X15060185
  32. 32. Зайцева С.В., Зданович С.А., Койфман О.Н. // Коорд. химия. 2010. Т. 36. № 5. С. 323.
  33. 33. Yamaji M., Hamaz Y., Hashino M. // Chem. Phys. Lett. 1990. V. 165. Р. 309. https://doi.org/10.1016/0009-2614 (90)87194-v
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library