RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

SYNTHESIS AND STRUCTURE OF NANOCRYSTALLINE COPPER SULFIDES WITH DJURLEITE AND COVELLITE STRUCTURES

PII
S3034560X25070066-1
DOI
10.7868/S3034560X25070066
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 7
Pages
897-903
Abstract
Method of chemical deposition from water solutions of copper nitrate and sodium sulphide, and also from water solutions of copper nitrate with use thiocarbonic acid diamide as sulfidizer in the presence of Trilon stabilizer are synthesized nanocrystalline powders of copper sulfides with structures of covellite and diurleite. It is established, that as a result of sulfidization of copper nitrate by sodium sulphide forms powders of copper sulfides with the particle size of 3–6 nanometers having structure of hexagonal covellite and also monoclinic diurleite CuS with small nonstoichiometry of copper sublattice. Deposition from poorly alkaline water solutions of copper nitrate, thiocarbonic acid diamide and Trilon with heating to temperature ~90–100°C would allow to receive nanocrystalline powders CuS with the particle size of 45–55 nanometers having structure of hexagonal covellite.
Keywords
химическое осаждение нитрат меди сульфид натрия диамид тиоугольной кислоты Трилон Б нанопорошок джарлеит ковеллин
Date of publication
15.07.2025
Year of publication
2025
Number of purchasers
0
Views
32

References

  1. 1. Lukashev P., Lambrecht W.R.L., Kotani T. et al. // Phys. Rev. B. 2007. V. 76. № 19. P. 195202. https://doi.org/10.1103/PhysRevB.76.195202
  2. 2. Садовников С.И., Сергеев С.В., Гусев А.И. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 792. https://doi.org/10.31857/S0044457X24050192
  3. 3. Зарубеж М.А., Ильина Е.Г., Машкавич А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 2. С. 166. https://doi.org/10.31857/S0044457X24020038
  4. 4. Shaikh G.V., Nilegave D.S., Girawale S.S. et al. // ACS Omega. 2022. V. 7. № 34. P. 30233. https://doi.org/10.1021/acsomega.2c03352
  5. 5. Evans H.T.Jr. // Nature Phys. Sci. 1971. V. 232. P. 69.
  6. 6. Evans H.T.Jr. // Z. Kristallogr. 1979. V. 150. P. 299.
  7. 7. Barth T. // Z. Mineral. Geol. A. 1926. P. 284.
  8. 8. Evans H.T.Jr., Konnert J.A. // Am. Mineral. 1976. V. 61. P. 996.
  9. 9. Fjellvag H., Gronvold F., Stolen S. et al. // Z. Kristallogr. 1988. V. 184. P. 111.
  10. 10. Jiang X., Xie Yi., Lu J. et al. // J. Mater. Chem. 2010. V. 10. № 9. P. 2193.
  11. 11. Djurle S. // Acta Chem. Scand. 1958. V. 12. № 7. P. 1415. https://doi.org/10.3891/acta.chem.scand.12-1415
  12. 12. Roseboom E.H. // Am. Mineral. 1962. V. 47. P. 1181.
  13. 13. Joint Committee on Powder Diffraction Standards (JCPDS card № C83 1463).
  14. 14. Evans H.T Jr. // Science. 1979. V. 203. № 4378. P. 356.
  15. 15. Gronvold F., Westrum E.F. Jr. // Am. Mineral. 1980. V. 65. № 5–6. P. 574.
  16. 16. Morimoto N., Kullerud G. // Am. Mineral. 1963. V. 48. № 1–2. P. 110.
  17. 17. Mumme W.G., Sparrow G.J., Walker G.S. // Mineralogical Magazine. 1988. V. 52. № 6. P. 323.
  18. 18. Mypaueea K.C., Caikoea C.B., Bopobeea C.A. u dp. // Журн. структур. химии. 2017. Т. 58. № 7. С. 1421. https://doi.org/10.26902/JSC20170715
  19. 19. Yusanooa Y.C., Kooseenuxooa H.C., Barcianoa H.B. u dp. // В кн.: Тезисы докл. XXVIII Рос. мол. научн. конф. “Проблемы теор. и эксп. химии”. Екатеринбург, 23–27 апр. 2018. С. 334.
  20. 20. Behboudnia M., Khanbabaee B. // J. Cryst. Growth. 2007. V. 304. № 1. P. 158. https://doi.org/10.1016/j.jcrysgro.2007.02.016
  21. 21. Bera P., Seok S.I. // Solid State Sci. 2012. V. 14. № 8. P. 1126. https://doi.org/10.1016/j.solidstatesciences.2012.05.027
  22. 22. Xie Y., Riedinger A., Prato M. et al. // J. Am. Chem. Soc. 2013. V. 135. № 46. P. 17630. https://doi.org/10.1021/ja409754v
  23. 23. Ajibade P.A., Botha N.L. // Res. Phys. 2016. V. 6. P. 581. http://dx.doi.org/10.1016/j.rinp.2016.08.001
  24. 24. Sieman U.M., Naji I.S. S // Iraqi J. Phys. 2018. V. 16. № 38. P. 124. https://doi.org/10.20723/ijp.16.38.124–131
  25. 25. Kuterbekov K.A., Balapanov M.Kh., Kuhenova M.M. et al. // Lett. Mater. 2022. V. 12. № 3. P. 191. https://doi.org/10.22226/2410-3535-2022-3-191-196
  26. 26. Xie Y., Carbone L., Nobile C. et al. // ACS Nano. 2013. V. 7. P. 7352. https://doi.org/10.1021/nn403035s
  27. 27. Jaque D., Maestro L.M., del Rosal B. et al. // Nanoscale. 2014. V. 6. № 16. P. 9494. https://doi.org/10.1039/C4NR00708E
  28. 28. Shaw W.H.R., Walker D.G. // J. Am. Chem. Soc. 1956. V. 78. № 22. P. 5769. https://pubs.acs.org/doi/10.1021/ja01603a014
  29. 29. Mapsoe B.Ф., Mackaeea Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: Изд-во УрО РАН, 2006. С. 41.
  30. 30. XPert HighScore Plus. Version 2.2e (2.2.5). 2009 PANalytical B. V. Almedo, the Netherlands.
  31. 31. Match. Version 1.10b. Phase Identification from Powder Diffraction 2003–2010 Crystal Impact.
  32. 32. Takeuchi Y., Kadoh Y., Sato G. // Z. Kristallogr. 1985. V. 173. № 1–2. P. 1198. https://doi.org/10.1524/zkrl.1985.173.1-2.119
  33. 33. Joint Committee on Powder Diffraction Standards (JCPDS card № 75–2233).
  34. 34. Ohmasa M., Suzuki M., Takeuchi Y. // Mineral. J. 1977. V. 8. № 6. P. 311.
  35. 35. Gusev A.I., Rempel A.A. Nanocrystalline Materials. Cambridge: Cambridge Intern. Sci. Publishing, 2004. 351 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library