RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

LOW-TEMPERATURE OLEYLAMINE-MEDIATED HYDROTHERMAL SYNTHESIS OF COPPER NANOWIRES INVOLVING ASCORBIC ACID

PII
S3034560X25070058-1
DOI
10.7868/S3034560X25070058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 7
Pages
887-896
Abstract
The low temperature hydrothermal synthesis of copper nanowires in the presence of oleylamine and ascorbic acid has been investigated. It was found that ascorbic acid can be effectively used as a "soft" reducing agent in the preparation of one-dimensional copper nanostructures. The formation of nanowires with the desired crystal structure and the average size of the coherent scattering region, ranging from 25.7 to 28.8 nm, was confirmed by X-ray diffraction analysis.
Keywords
гидротермальный синтез медные нанопроволоки аскорбиновая кислота
Date of publication
15.07.2025
Year of publication
2025
Number of purchasers
0
Views
57

References

  1. 1. Song J., Zeng H. // Angew. Chem. Int. Ed. 2015. V. 54. № 34. P. 9760. https://doi.org/10.1002/anie.201501233
  2. 2. Hofmann A.I., Cloutet E., Hadziioannou G. // Adv. Electron. Mater. 2018. V. 4. № 10. https://doi.org/10.1002/aelm.201700412
  3. 3. Huang Q., Zhu Y. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 51. P. 60736. https://doi.org/10.1021/acsami.1c14816
  4. 4. Singh M., Rana S. // Mater. Today Commun. 2020. V. 24. P. 101317. https://doi.org/10.1016/j.mtcomm.2020.101317
  5. 5. Naka S. // Transparent Electrodes for Organic Light-emitting Diodes, in: Transparent Conduct. Mater., Wiley. 2018. P. 301–315. https://doi.org/10.1002/9783527804603.ch5_2
  6. 6. Yan T., Yang W., Wu L. et al. // J. Mater. Sci. Technol. 2025. V. 209. P. 95. https://doi.org/10.1016/j.jmst.2024.05.016
  7. 7. Guo C.F., Ren Z. // Mater. Today 2015. V. 18. № 3. P. 143. https://doi.org/10.1016/j.mattod.2014.08.018
  8. 8. Ding Y., Xiong S., Sun L. et al. // Chem. Soc. Rev. 2024. V. 53. № 15. P. 7784. https://doi.org/10.1039/DACS00080C
  9. 9. Simonenko N.P., Simonenko T.L., Gorobisov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1301. https://doi.org/10.1134/S0036023624601697
  10. 10. Simonenko N.P., Simonenko T.L., Gorobisov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1265. https://doi.org/10.1134/S0036023624601685
  11. 11. Wang R., Ruan H. // J. Alloys Compd. 2016. V. 656. P. 936. https://doi.org/10.1016/j.jallcom.2015.09.279
  12. 12. Arsenov P.V., Phyushenko K.S., Mikhailova P.S. et al. // Nano-Structures & Nano-Objects 2025. V. 41. P. 101429. https://doi.org/10.1016/j.nanoso.2024.101429
  13. 13. Umemoto Y., Yokoyama S., Motomiya K. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2022. V. 651. P. 129692. https://doi.org/10.1016/j.colsurfa.2022.129692
  14. 14. Ulrich N., Schäfer M., Römer M. et al. // ACS Appl. Nano Mater. 2023. V. 6. № 6. P. 4190. https://doi.org/10.1021/acsanm.2c05232
  15. 15. Patella B., Russo R.R., O’Riordan A. et al. // Talanta. 2021. V. 221. P. 121643. https://doi.org/10.1016/j.talanta.2020.121643
  16. 16. Li Q., Fu S., Wang X. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 51. P. 57471. https://doi.org/10.1021/acsami.2c19531
  17. 17. Zhao H.-X., Liu Y.-L., Wang G.-G. et al. // Energy Technol. 2021. V. 9. № 1. https://doi.org/10.1002/ente.202000744
  18. 18. Zhang H., Tian Y., Wang S. et al. // Chem. Eng. J. 2021. V. 426. P. 131438. https://doi.org/10.1016/j.cej.2021.131438
  19. 19. Khuje S., Sheng A., Yu J. et al. // ACS Appl. Electron. Mater. 2021. V. 3. № 12. P. 5468. https://doi.org/10.1021/acsaelm.1c00905
  20. 20. Anand Omar R., Ranavare S.B., Verma N. // Chem. Eng. Sci. 2024. V. 299. P. 120489. https://doi.org/10.1016/j.ces.2024.120489
  21. 21. Li K.-C., Chu H.-C., Lin Y. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 19. P. 12082. https://doi.org/10.1021/acsami.6b04579
  22. 22. Scardaci V. // Appl. Sci. 2021. V. 11. № 17. P. 8035. https://doi.org/10.3390/app11178035
  23. 23. Conte A., Rosati A., Fantin M. et al. // Mater. Adv. 2024. V. 5. № 22. P. 8836. https://doi.org/10.1039/DAMA00402G
  24. 24. Zhao Y., Zhang Y., Li Y. et al. // New J. Chem. 2012. V. 36. № 5. P. 1161. https://doi.org/10.1039/c2nj21026f
  25. 25. Haase D., Hampel S., Leonhardt A. et al. // Surf. Coatings Technol. 2007. V. 201. № 22–23. P. 9184. https://doi.org/10.1016/j.surfcoat.2007.04.014
  26. 26. Yang X., Hu X., Wang Q. et al. // ACS Appl. Mater. Interfaces 2017. V. 9. № 31. P. 26468. https://doi.org/10.1021/acsami.7b08606
  27. 27. Schmidlicke C., Poetschke M., Renner L.D. et al. // RSC Adv. 2014. V. 4. № 86. P. 46363. https://doi.org/10.1039/C4RA04853A
  28. 28. Inguanta R., Piazza S., Sunseri C. // Appl. Surf. Sci. 2009. V. 255. № 21. P. 8816. https://doi.org/10.1016/j.apsusc.2009.06.062
  29. 29. Nam V., Lee D. // Nanomaterials. 2016. V. 6. № 3. P. 47. https://doi.org/10.3390/nano6030047
  30. 30. Wang Y., Yin Z. // Appl. Sci. Converg. Technol. 2019. V. 28. № 6. P. 186. https://doi.org/10.5757/ASCT.2019.28.6.186
  31. 31. Cava Huaman J.L., Urushizaki I., Jeyadevan B. // J. Nanomater. 2018. V. 2018. P. 1. https://doi.org/10.1155/2018/1698357
  32. 32. Fievet F., Ammar-Merah S., Brayner R. et al. // Chem. Soc. Rev. 2018. V. 47. № 14. P. 5187. https://doi.org/10.1039/C7CS00777A
  33. 33. Zhang J., Li X., Liu D. et al. // Nanoscale. 2019. V. 11. № 24. P. 11902. https://doi.org/10.1039/C9NR01470E
  34. 34. Zheng Y., Chen N., Wang C. et al. // Nanomaterials. 2018. V. 8. № 4. P. 192. https://doi.org/10.3390/nano8040192
  35. 35. Zhao S., Han F., Li J. et al. // Small. 2018. V. 14. № 26. https://doi.org/10.1002/smll.201800047
  36. 36. Ravi Kumar D.V., Kim I., Zhong Z. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 40. P. 22107. https://doi.org/10.1039/C4CP03880K
  37. 37. Won Y., Kim A., Yang W. et al. // NPG Asia Mater. 2014. V. 6. № 9. P. E132. https://doi.org/10.1038/am.2014.88
  38. 38. Zhang Y., Guo J., Xu D. et al. // Nano Res. 2018. V. 11. № 7. P. 3899. https://doi.org/10.1007/s12274-018-1966-3
  39. 39. Cui F., Dou L., Yang Q. et al. // J. Am. Chem. Soc. 2017. V. 139. № 8. P. 3027. https://doi.org/10.1021/jacs.6b11900
  40. 40. Yokoyama S., Motomiya K., Jeyadevan B. et al. // J. Colloid Interface Sci. 2018. V. 531. P. 109. https://doi.org/10.1016/j.jcis.2018.07.036
  41. 41. Liu X., Yang C., Yang W. et al. // J. Mater. Sci. 2021. V. 56. № 9. P. 5520. https://doi.org/10.1007/s10853-020-05617-z
  42. 42. Lu P.-W., Jaihao C., Pan L.-C. et al. // Polymers (Basel). 2022. V. 14. № 16. P. 3369. https://doi.org/10.3390/polym14163369
  43. 43. Luo M., Zhou M., Rosa da Silva R. et al. // Chem. Nano. Mat. 2017. V. 3. № 3. P. 190. https://doi.org/10.1002/cnma.201600337
  44. 44. Deng D., Cheng Y., Jin Y. et al. // J. Mater. Chem. 2012. V. 22. № 45. P. 23989. https://doi.org/10.1039/c2jm35041f
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library