- PII
- S3034560X25050116-1
- DOI
- 10.7868/S3034560X25050116
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 5
- Pages
- 715-726
- Abstract
- Titanisation of C/SiC composite fibres with core-shell structure was carried out by synthesis in molten salts. A mixture of salts KCl, LiCl and KTiF was used as the reaction medium, and metallic titanum powder was used as the titanising agent. The titanisation was carried out at a temperature of 800°C in a stationary argon atmosphere. Ceramic material was obtained from titanised fibres by hot pressing. The microstructure and phase composition of the fibres and hot pressed samples were investigated. It was found that TiSi and TiC phases are formed during titanation, and during hot pressing the TiSi phase reacts with the carbon core of C/SiC composite fibres to give titanium carbide TiC as a titanium-containing product. It was found that increasing the degree of titanisation leads to a decrease in porosity and an insignificant increase in strength of the obtained material.
- Keywords
- смесь солей KCl/LiCl/KTiF титан керамический материал
- Date of publication
- 15.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 37
References
- 1. Xingui Z., Yua Y., Changrui Z. et al. // Mater. Sci. Eng., A. 2006. V. 433. P. 104. https://doi.org/10.1016/j.msea.2006.06.060
- 2. Deng J., Wei Y., Liu W. // J. Am. Ceram. Soc. 1999. V. 82. № 6. P. 1629. https://doi.org/10.1111/j.1151-2916.1999.tb01976.x
- 3. Filipuzzi L., Camus G., Naslain R. // J. Am. Ceram. Soc. 1994. V. 77. № 2. P. 459. https://doi.org/10.1111/j.1151-2916.1994.tb07015.x
- 4. Гаршин А.П., Кулик В.И., Нилов А.С. // Новые огнеупоры. 2012. № 2. С. 43.
- 5. Воробьёв А.А., Кулик В.А. и др. // Известия ПГУПС. 2020. Т. 17. № 2. С. 210. https://doi.org/10.20295/1815-588X-2020-2-210-220
- 6. Krenkel W., Berndt F. // Mater. Sci. Eng., A. 2005. V. 412. № 1-2. P. 177. https://doi.org/10.1016/j.msea.2005.08.204
- 7. Fan S., Yang C., He L. et al.// Rev. Adv. Mater. Sci. 2016. V. 44. P. 313.
- 8. Гаршин А.П., Кулик В.И., Матвеев С.А. и др. // Новые огнеупоры. 2017. Т. 4. С. 20. https://doi.org/10.17073/1683-4518-2017-4-20-35
- 9. Yang J., Ai Y., Lv X. et al. // J. Int. Appl. Ceram. Technol. 2021. V. 18. №. 2. P. 449. https://doi.org/10.1111/ijac.13655
- 10. Крамаренко Е.И., Кулаков В.В., Кенигфест А.М. и др. // Изв. Самар. Науч. центра РАН. 2011. Т. 13. № 4. С. 759.
- 11. Воротыло С., Левашов Е.А., Потанин А.Ю. и др. // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2020. Т. 1. С. 41. https://doi.org/10.17073/1997-308X-2020-41-54
- 12. Орбант Р.А., Уткин А.В. Банных Д.А. и др. // Неорган. материалы. 2023. Т. 59. № 11. С. 1253. https://doi.org/10.31857/s0002337x2311009x
- 13. Istomina E.I., Istomin P.V., Nadutkin A.V. et al. // Ceram. Int. 2021. V. 47. № 16. P. 22587. https://doi.org/10.1016/j.ceramint.2021.04.270
- 14. Истомина Е.И., Истомин П.В., Надуткин А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 977. https://doi.org/10.1134/S0036023621080088
- 15. Гаршин А.П. Материаловедение. Техническая керамика в машиностроении / Учебник для вузов. 2-е изд., испр. и доп. М.: Изд-во Юрайт. 2024. 296 с.
- 16. Nadeau J.S. // Am. Ceram. Soc. Bull. 1973. V. 52. № 2. P. 170.
- 17. Kinoshita M., Matsumura H., Iwasa M., Hayami R. // J. Ceram. Soc. Jpn. 1981. V. 89. № 6. P. 302.
- 18. Yano T., Budiyanto K., Yoshida K., Iseki T. // Fusion Eng. Des. 1998. V. 41. P. 157.
- 19. Zou Ch., Ou Y., Zhou W., Li Zh. et al. // Mater. 2024. V. 17. № 5. P. 1182. https://doi.org/10.3390/ma17051182
- 20. Перевислов С.Н., Лысенков А.С. и др. // Неорган. материалы. 2017. Т. 53. № 2. С. 206. https://doi.org/10.7868/S0002337X17020099
- 21. Samanta A.K., Dhargupta K.K., De A.K., Ghatak S. // Ceram. Int. 2000. V. 26. P. 831. https://doi.org/10.1016/S0272-8842 (00)00050-X
- 22. Ye H., Rixecker G., Haug S., Aldinger F. // J. Eur. Ceram. Soc. 2002. V. 22. Р. 2379. https://doi.org/10.1016/S0955-2219 (02)00006-7
- 23. Kirianov A., Yamaguchi A. // Ceram. Int. 2000. V. 26. Р. 441. https://doi.org/10.1016/S0272-8842 (99)00080-2
- 24. Zhou Y., Hirao K. et al. // J. Mater. Res. 2003. V. 18. № 8. P. 1854. https://doi.org/10.1557/JMR.2003.0259
- 25. Van Dijen F.K., Mayer E.// J. Eur. Ceram. Soc. 1996. V. 16. Р. 413. https://doi.org/10.1016/0955-2219 (95)00129-8
- 26. Rixecker G., Wiedmann I., Rosinus A., Aldinger F. et al. // J. Eur. Ceram. Soc. 2001. V. 21. P. 1013. https://doi.org/10.1016/S0955-2219 (00)00317-4
- 27. Biswas K., Rixecker G., Wiedmann I., Scweizer M. et al. // Mater. Chem. Phys. 2001. V. 67. P. 180. https://doi.org/10.1016/S0254-0584 (00)00437-5
- 28. Ye H., Rixecker G., Haug S., Aldinger F. // J. Eur. Ceram. Soc. 2002. V. 22. Р. 2379. https://doi.org/10.1016/S0955-2219 (02)00006-7
- 29. Maitre A., Put A.V., Laval J. P., Valette S., Trolliard G. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1881. https://doi.org/10.1016/j.jeurceramsoc.2008.01.002
- 30. Guo W., Xiao H., Liu J., Liang J. et al. // Ceram. Int. 2015. V. 41. № 9. P. 11117. https://doi.org/10.1016/j.ceramint.2015.05.059
- 31. Magnani G., Beltrami G. et al. // J. Eur. Ceram. Soc. 2001. V. 21. № 5. P. 633. https://doi.org/10.1016/S0955-2219 (00)00244-2
- 32. Huang Z.H., Jia D.C., Liu Y.G. // Ceram. Int. 2003. V. 29. Р. 13. https://doi.org/10.1016/S0272-8842 (02)00082-2
- 33. Житнюк С.В. // Труды ВИАМ. 2019. № 3. С. 79.
- 34. Raju K., Yoon D.H // Ceram. Int. 2016 V. 42. № 16. P. 17947. https://doi.org/10.1016/j.ceramint.2016.09.022
- 35. Марков М. А., Николаев А. Н., Чекуряев А. Г. и др. // Физика и химия стекла. 2024. Т. 50. № 3. С. 24. https://doi.org/10.31857/S0132665124030035
- 36. Suzuki K., Somiya S., Inomata Y. Ceramics / V. 2. London: Elsevier, 1991. P. 163.
- 37. Zhu Y., Qin Z., Chai J.et al. // Metall. Mater. Trans. A. 2022. V. 53. P. 1188. https://doi.org/10.1007/s11661-021-06554-5
- 38. Singh S., Pai K. // Ceram. Int. 2021. V. 47. № 10. Part B. P. 14809. https://doi.org/10.1016/j.ceramint.2020.10.068
- 39. Baitalik S., Molla A.R., Kayal N. // J. Alloys Compd. 2018. V. 767. № 30. P. 302. https://doi:10.1016/j.jallcom.2018.07.069
- 40. Симоненко Н.П., Николаев В.А., Симоненко Е.П. и др. // Журн. неорган. химии. 2016. Т. 61. № 12. С. 1566. https://doi.org/10.1134/S0036023616120184
- 41. Истомина Е.И., Истомин П.В., Надуткин А.В. и др. // Сборник тезисов докладов. ХХII Менделеевский съезд по общей и прикладной химии. Том 1. М.: ООО "Адмирал Принт". 2024. С. 404
- 42. Huang Z, Li F., Jiao Ch. et al. // Ceram. Int. 2016. V. 42. № 5. P. 6221. https://doi.org/10.1016/j.ceramint.2016.01.004
- 43. Gupta S.K., Mao Y.// J. Phys. Chem. 2021. V. 125. P. 6508. https://doi.org/10.1021/acs.jpcc.0c10981
- 44. Li S., Song J., Che Y., Jiao S. et al. // Energ. Environ. Mater. 2023. V. 6. P. e12339. https://doi.org/10.1002/eem2.12339
- 45. Liu X., Wang Z., Zhang S. // Int. J. Appl. Ceram. Technol. 2011. V. 8. P. 911. https://doi.org/10.1111/j.1744-7402.2010.02529.x
- 46. Soe H.N., Khangkhamano M., Sangkert S. et al. // Mater. Lett. 2018. V. 229. P. 118. https://doi.org/10.1016/j.matlet.2018.06.125
- 47. Behboudi F., Kakroudi M.G., Vafa N.P. et al. // Ceram. Int. 2021. V. 47. P. 8161. https://doi.org/10.1016/j.ceramint.2020.11.172
- 48. Ye J., Zhang S., Lee W.E. // J. Eur. Ceram. Soc. 2013. V. 33. P. 2023. https://doi.org/10.1016/j.jeurceramsoc.2013.02.011
- 49. Yin Y., Wang S., Zhang S. et al. // Int. J. Appl. Ceram. Technol. 2022. V. 19. P. 1529. https://doi.org/10.1111/ijac.13961
- 50. Li Y., Yin Y., Chen J., Kang X. et al. // Materials. 2023. V. 16. P. 5895. https://doi.org/10.3390/ma16175895
- 51. Li H., Xie Y., Wang H., Qian Z. et al. // J. Alloys Compd. 2022. V. 928. P. 167142. https://doi.org/10.1016/j.jallcom.2022.167142
- 52. Luo Y., Liu Z., Yu C., Deng C., Ding J. // J. Eur. Ceram. Soc. 2024. V. 44. P. 7953. https://doi.org/10.1016/j.jeurceramsoc.2024.05.066
- 53. Fan S., Deng C., Yu C., Liu Z., Ding J. // J. Mater. Res. Technol. 2024. V. 29. P. 4833. https://doi.org/10.1016/j.jmrt.2024.02.201
- 54. Tarasov V.O., Istomina E.I., Istomin P.V. et al. // Ceram. Int. 2024. V. 590. P. 46136. https://doi.org/10.1016/j.ceramint.2024.08.363
- 55. Zou Y., Huang X., Fan B., Tang Z. et al. // Ceram. Int. 2023. V. 49. P. 8048. https://doi.org/10.1016/j.ceramint.2022.10.323
- 56. Yang J., Ye F., Cheng L. // J. Eur. Ceram. Soc. 2022. V. 42. P. 1197. https://doi.org/10.1016/j.jeurceramsoc.2021.12.004
- 57. Baumli P., Sytchev J., Göndör Zs. H., Kaptay G. // Mater. Sci. Forum. 2005. V. 473. P. 39. https://doi.org/10.4028/www.scientific.net/MSF.473-474.39
- 58. Kim H.-J., Ahn Y.-S. // J. Alloys Compd. 2020. V. 849. P. 156508. https://doi.org/10.1016/j.jallcom.2020.156508
- 59. Zhu T., Wang Zh. // Rev. Adv. Mater. Sci. 2024. V. 63. P. 20240029. https://doi.org/10.1515/rams-2024-0029
- 60. Xu Y., Sun W., Miao C., Shen Y. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 11. P. 5405. https://doi.org/10.1016/j.jeurceramsoc.2021.04.043
- 61. Du Y., Schuster J.C. // J. Am. Ceram. Soc. 2000. V. 83. № 1. P. 197. https://doi.org/10.1111/j.1151-2916.2000.tb01170.x