ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Синтез и строение стибониевых комплексов {[2,6-(MeO)2C6H3]3SbCH2C(O)OEt}I3 и {[(2,6-(MeO)2C6H3)3SbEt][Hg3I7]}n

Код статьи
S3034560X25030101-1
DOI
10.7868/S3034560X25030101
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 3
Страницы
386-393
Аннотация
Получены новые стибониевые комплексы, содержащие полианионы. Алкилированием трис(2,6-диметоксифенил)стибина этиловым эфиром иодоуксусной кислоты синтезирован [Ar3SbCH2C(O)OEt]I3, где Ar = 2,6-(MeO)2C6H3, который также является продуктом реакции [Ar3SbCH2C(O)OEt]I и I2. Взаимодействие [Ar3SbEt]I с дииодидом ртути приводит к образованию {[Ar3SbEt][Hg3I7]}n, где Ar = 2,6-(MeO)2C6H3. Соединения [Ar3SbCH2C(O)OEt]I3 и {[Ar3SbEt][Hg3I7]}n исследованы методом РСА. Атомы сурьмы и ртути имеют искаженную тетраэдрическую координацию. Валентные углы имеют следующие значения: ∠CSbC 104.2(2)°–113.9(1)°, ∠CSbC 102.4(4)°–116.0(5)°, ∠IHgI 97.06(2)°–121.28(2)°.
Ключевые слова
триарилстибин алкилиодид дииодид ртути иод рентгеноструктурный анализ
Дата публикации
17.03.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
56

Библиография

  1. 1. Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганической химии. Сурьма, висмут. М.: Наука, 1976. С. 184.
  2. 2. Моругова В.А., Гущин А.В., Скворцов Г.Г., Моисеев Д.В. // Журн. общ. химии. 2006. Т. 76. № 5. С. 784.
  3. 3. Moiseev D.V., Morugova V.A., Gushchin A.V. et al. // J. Organomet. Chem. 2004. V. 689. P. 731. https://doi.org/10.1016/j.jorganchem.2003.11.025
  4. 4. Qin W., Kakusawa N., Wu Y. et al. // Chem. Pharm. Bull. 2009. V. 57. № 4. P. 436. https://doi.org/10.1248/cpb.57.436
  5. 5. Гущин А.В., Малеева А.И., Кипелкин Е.В. и др. // Журн. общ. химии. 2021. Т. 91. № 2. С. 274. https://doi.org/10.31857/S0044460X21020116
  6. 6. Hirai M., Myahkostupov M., Castellano F.N., Gabbaï F.P. // Organometallics. 2016. V. 35. P. 1854. https://doi.org/10.1021/acs.organomet.6b00233
  7. 7. Ke I.-S., Myahkostupov M., Castellano F.N., Gabbaï F.P. // J. Am. Chem. Soc. 2012. V. 134. № 37. P. 15309. https://doi.org/10.1021/ja308194w
  8. 8. Fujiwara M., Imada M., Baba A., Matsuda H. // Tetrahedron Lett. 1989. V. 30. P. 739.
  9. 9. Fujiwara M., Baba A., Matsuda H. // J. Heterocycl. Chem. 1989. V. 26. Р. 1659. https://doi.org/10.1002/jhet.5570260628
  10. 10. Ugarte R.A., Devarajan D., Mushinski R.M. et al. // Dalton Trans. 2016. V. 45. P. 11150. https://doi.org/10.1039/C6DT02121B
  11. 11. Artem'eva E.V., Duffin R.N., Munuganti S. et al. // J. Inorg. Biochem. 2022. V. 234. P. 111864. https://doi.org/10.1016/j.jinorgbio.2022.111864
  12. 12. Doering W.E., Hoffmann A.K. // J. Am. Chem. Soc. 1955. V. 77. P. 521. https://doi.org/10.1021/ja01608a003
  13. 13. Brinnand M.E., Dyke W.J.C., Jones W.H. et al. // J. Chem. Soc. 1932. Р. 1815. https://doi.org/10.1039/JR9320001815
  14. 14. Issleib K., Hamann B. // Z. Аnorg. Аllg. Сhem. 1965. V. 339. P. 289. https://doi.org/10.1002/zaac.19653390509
  15. 15. Issleib K., Hamann B., Schmidt L. // Z. Аnorg. Аllg. Сhem. 1965. V. 339. P. 298. https://doi.org/10.1002/zaac.19653390510.
  16. 16. Huang Y.-Z., Liao Y. // J. Org. Chem. 1991. V. 56. P. 1381. https://doi.org/10.1021/jo00004a010
  17. 17. Huang Y.-Z., Zhang L.-J., Chen C., Guo Z.-G. // J. Organomet. Chem. 1991. V. 412. P. 47. https://doi.org/10.1016/0022-328X (91)86040-W
  18. 18. Henry M.C., Wittig G. // J. Am. Chem. Soc. 1960. V. 82. № 3. P. 563. https://doi.org/10.1021/ja01488a017
  19. 19. Henning D., Kempter G., Ahrens E. et al. // Z. Chem. 1967. V. 7. № 12. P. 463. https://doi.org/10.1002/zfch.19670071213
  20. 20. Henning D., Kempter G., Worlitzer K.-D. // Z. Chem. 1969. V. 9. № 8. P. 306. https://doi.org/10.1002/zfch.19690090813
  21. 21. Wade C.R., Gabbaï F.P. // Organometallics. 2011. V. 30. P. 4479. https://doi.org/10.1021/om200499y
  22. 22. Christianson A.M., Gabbaï F.P. // Chem. Commun. 2017. V. 53. P. 2471. https://doi.org/10.1039/C6CC09205E
  23. 23. Wada M., Miyake S., Hayashi S. et al. // J. Organomet. Chem. 1996. V. 507. P. 53. https://doi.org/10.1016/0022-328X (95)05716-3
  24. 24. Егорова И.В., Жидков В.В., Гринишак И.П. и др. // Журн. общ. химии. 2021. Т. 91. № 7. С. 1100.
  25. 25. Егорова И.В., Несина И.Н., Жидков В.В. и др.// Журн. общ. химии. 2024. Т. 94. № 9.
  26. 26. Cambridge Structural Database System, Version 5.43, 2021.
  27. 27. Егорова И.В., Жидков В.В., Гринишак И.П. и др. // Журн. неорган. химии. 2019. Т. 64. № 1. С. 15.
  28. 28. Bricklebank N., Godfrey S.M., Lane H.P. et al. // J. Chem. Soc., Dalton Trans. 1994. V. 12. P. 1759. https://doi.org/10.1039/dt9940001759
  29. 29. Breunig H.J., Denker M., Ebert K.H. et al. // Z. Anorg. Allg. Chem. 1997. V. 623. P. 1151. https://doi.org/10.1002/zaac.19976230724
  30. 30. Wittig G., Torsell K. // Acta Chem. Scand. 1953. V. 7. P. 1293. https://doi.org/10.3891/acta.chem.scand.07-1293
  31. 31. Breunig H.J., Koehne T., Moldovan O. et al. // J. Organomet. Chem. 2010. V. 695. P. 1307. https://doi.org/10.1016/j.jorganchem.2010.02.016
  32. 32. Groessl M., Fei Z., Dyson P.J., Katsyuba S.A. et al. // Inorg. Chem. 2011. V. 50 № 19. P. 9728. https://doi:10.1021/ic201642k
  33. 33. Edis Z., Bloukh S., Abu Sara H. et al. // Pathog. 2019. V. 182. P. 48. https://doi.org/10.3390/pathogens8040182
  34. 34. Matteo S., Bazzicalupi C., Celeste G. et al. // R. Soc. Chem. 2013. V. 47. P. 11. https://doi.org/10.1039/x0xx00000x
  35. 35. Zhilyaeva E.I., Torunova S.A., Lyubovskaya R.N. et al. // Synth. Met. 1999. V. 107. P. 123. https://doi.org/10.1016/S0379-6779 (99)00151-4
  36. 36. Zhilyaeva E.I., Lyubovskaya R.N., Konovalikhin S.V. et al. // Synth. Met. 1998. V. 94. № 1. P. 35. https://doi.org/10.1016/S0379-6779 (97)04136-2
  37. 37. Martinez B., Livache C., Goubet N. et al. // Phys. Chem. C. 2018. V. 122. № 1. P. 859. https://doi.org/10.1021/acs.jpcc.7b09972
  38. 38. Cryer M.E., Fiedler H., Halpert J.E. // ACS Appl. Mater. Inter. 2018. V. 10. № 22. P. 18927. https://10.1021/acsami.8b05429
  39. 39. Middya A., Snigdhya G., Mondal P. et al. // Inorg. Chim. Acta. 2023. V. 558. P. 1217. https://doi.org/10.1016/j.ica.2023.121754
  40. 40. Егорова И.В., Жидков В.В., Родионова Н.А. и др. // Журн. общ. химии. 2023. Т. 93. № 9. С. 1403. https://doi.org/10.1134/S1070363223090098
  41. 41. Bruker AXS Inc., APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA, 2004.
  42. 42. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  43. 43. Smith B.C. Infrared Spectral Interpretation: A Systematic Approach. Boca Raton: CRC Press, 1998. P. 288. https://doi.org/10.1201/9780203750841
  44. 44. Cordero B., Gomez V., Platero-Prats A.E. et al. // J. Chem. Soc., Dalton Trans. 2008. V. 21. P. 2832. https://doi.org/10.1039/B801115J
  45. 45. Бацанов С.С. // Неорган. материалы. 2001. Т. 37. № 9. С. 1031. https://doi.org/10.1023/A:1011625728803
  46. 46. Marks T.J., Kalina D.W. // Extended Linear Chain Compounds. N.Y. 1982. V. 1. P. 197.
  47. 47. Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2018. V. 367. P. 1. https://doi.org/10.1016/j.ccr.2018.04
  48. 48. Svensson P.H., Kloo L. // Chem. Rev. 2003. V. 103. № 5. P. 1649. https://doi.org/10.1021/cr0204101
  49. 49. Jones P.G., Ruthe F. CCDC 926016: Experimental Crystal Structure Determination. 2013. https://doi.org/10.5517/cc102lh5
  50. 50. Savastano M. // Dalton Trans. 2021. V. 50. № 4. P. 1142. https://doi.org/10.1039/D0DT04091F
  51. 51. Rusnik J., Swen-Walstra S., Migchelsen T. // Acta Crystallogr. 1972. V. 28. P. 1331. https://doi.org/10.1107/s0567740872004248
  52. 52. Войт Е.И., Панасенко А.Е., Земнухова Л.А. // Журн. структур. химии. 2009. Т. 50. № 1. С. 66.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека