RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Zinc perfluorocyclohexanoate (C6F11COO)2Zn: synthesis, vapor formation and evaluation of thermodynamic characteristics

PII
S3034560X25020119-1
DOI
10.7868/S3034560X25020119
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 2
Pages
262-267
Abstract
The heterophase reaction of interaction of silver perfluorocyclohexanoate with zinc was studied by TG, DSC and mass spectrometry. It was found that as a result of interaction in the temperature range of 320–520 K, solid zinc perfluorocyclohexanoate is formed and an intramolecular reaction of zinc fluoride formation occurs. The obtained experimental data allowed us to calculate the standard enthalpies of formation of the solid zinc complex ΔfН°298.15 = –5693 ± 29 kJ/mol, sublimation and formation of dimeric molecules Zn2(C6F11COO)4 ΔsН°Т = = 190±15 kJ/mol, ΔfН°Т = –11196 ± 40 kJ/mol.
Keywords
ТГ ДСК масс-спектрометрия перфторциклогексаноат цинка стандартные энтальпии образования сублимации
Date of publication
17.02.2025
Year of publication
2025
Number of purchasers
0
Views
63

References

  1. 1. Ingram B.J., Gonzalez G.B., Kammler D.R. // J. Electroceram. 2004. V. 13. P. 167. https://doi.org/10.1007/s10832-004-5094-y
  2. 2. Klein A., Körber C., Wachau A. et al. // J. Mater. 2010. V. 3. № 11. P. 4892. https://doi.org/10.3390/ma3114892
  3. 3. Hartnagel H.L., Dawar A.L., Jain A.K. et al. Semiconducting Transparent Thin Films. Institute of Physics Publishing: Bristol, UK. 1995.
  4. 4. Ginley D.S., Bright C. // MRS Bull. 2000. V. 25. P. 15. https://doi.org/10.1557/mrs2000.256
  5. 5. Granqvist C.G. // Sol. Energy Mater. Sol. Cells. 2007. V. 91. P. 1529. https://doi.org/10.1016/j.solmat.2007.04.031
  6. 6. Ellmer K., Klein A., Rech B. Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Berlin: Springer-Verlag, Germany. 2008. https://doi.org/10.1007/978-3-540-73612-7
  7. 7. Fortunato E., Ginley D., Hosono H. et al. // MRS Bull. 2007. V. 32. P. 242. https://doi.org/10.1557/mrs2007.29
  8. 8. Gu F., Li C., Hu Y., Zhang L. // J. Cryst. Growth. 2007. V. 304. № 2. P. 369. https://doi.org/10.1016/j.jcrysgro.2007.03.040
  9. 9. Wang G., Shen X., Horvat J. et al. // J. Phys. Chem. С. 2009. V. 113. № 11. P. 4357. https://pubs.acs.org/doi/10.1021/jp8106149
  10. 10. Jogade S.M., Sutrave D.S., Gothe S.D. // Int. J. Adv. Res. Phys. Sci. 2015. V. 2. № 10. P. 36.
  11. 11. Vetter S., Haffer S., Wagner T., Tiemann M. // Sens. Actuators, B. 2015. V. 206. P. 133. https://doi.org/10.1016/j.snb.2014.09.025
  12. 12. Jung D., Han M., Lee G.S. // Sens. Actuators, B. 2014. V. 204. P. 596. https://doi.org/10.1016/j.snb.2014.08.020
  13. 13. Wollenstein J., Burgmair M., Plescher G. et al. // Sens. Actuators, B. 2003. V. 93. P. 442. https://doi.org/10.1016/S0925-4005 (03)00168-0
  14. 14. Li W., Xu L., Chen J. // Adv. Funct. Mater. 2005. V. 15. P. 851. https://doi.org/10.1002/adfm.200400429
  15. 15. Bhardwaj P., Singh J., Verma V. et al. // Physica B: Cond. Matter. 2025. V. 696. P. 416596. https://doi.org/10.1016/j.physb.2024.416596
  16. 16. Jayaraj M.K. (Ed.). Nanostructured Metal Oxides and Devices. Materials Horizons: From Nature to Nanomaterials. 2020. https://doi.org/10.1007/978-981-15-3314-3
  17. 17. Mishra S., Daniele S. // Chem. Rev. 2015. V. 115. № 16. P. 8379. https://doi.org/10.1021/cr400637c
  18. 18. Hichou A.E., Bougrine A., Bubendorff J.L. et al. // Semicond. Sci. Technol. 2002. V. 17. № 6. P. 607. https://doi.org/10.1088/0268-1242/17/6/318
  19. 19. Gunasekaran E., Ezhilan M., Mani et al. // Semicond. Sci. Technol. 2018. V. 33. № 9. P. 095005. https://doi.org/10.1088/1361-6641/aad2ab
  20. 20. Antony A., Pramodini S., Kityk I.V. et al. // Physica E. 2017. V. 94. P. 190. https://doi.org/10.1016/j.physe.2017.08.015
  21. 21. Kadi M.W., McKinney D., Mohamed R.M. et al. // Ceram. Int. 2016. V. 42. № 4. P. 4672. https://doi.org/10.1016/j.ceramint.2015.11.052
  22. 22. Paramanik B., Samanta S., Das D. // Opt. Mater. 2022. V. 133. P. 112961. https://doi.org/10.1016/j.optmat.2022.112961
  23. 23. Cosham S.D., Kociok-Köhn G., Johnson A.L. et al. // Eur. J. Inorg. Chem. 2015. V. 2015. № 26. P. 4362. https://doi.org/10.1002/ejic.201500536
  24. 24. Bekermann D., Rogalla D., Becker H.-W. et al. // Eur. J. Inorg. Chem. 2010. № 9. P. 1366. https://doi.org/10.1002/ejic.200901037
  25. 25. Успехи химии фтора. Т. I-II, перевод с англ. Термохимия органических соединений фтора / Под ред. Сергеева А.П. М.-Л. 1961.
  26. 26. Karasch M. // J. Res. Nat. Bur. Stand. 1929. P. 359.
  27. 27. Good W., Scott D., Waddingtion G. // J. Phys. Chem. 1956. V. 60. P. 1080.
  28. 28. Morozova E.A., Dobrokhotova Zh.V., Alikhanyan A.S. // J. Therm. Anal. Calorim. 2017. V. 130. № 3. P. 2211. https://doi.org/10.1007/s10973-017-6583-y
  29. 29. Kayumova D.B., Malkerova I.P., Yambulatov D.S. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 3. P. 210. https://doi.org/10.1134/S1070328423601310
  30. 30. Малкерова И.П., Каюмова Д.Б., Белова Е.В. и др. // Коорд. химия. 2023. Т. 49. № 11. С. 706. https://doi.org/10.31857/S0132344X22600515 EDN: NGONJB
  31. 31. Gribchenkova N.A., Alikhanyan A.S. // J. Alloys Compd. 2019. V. 778. P. 77. https://doi.org/10.1016/j.jallcom.2018.11.136
  32. 32. Краткая химическая энциклопедия в 5 томах. М.: Советская энциклопедия, 1967. Т. 5.
  33. 33. Термические константы веществ. Справочник в 10 выпусках / Под ред. Глушко В.П. М.: ВИНИТИ, 1973. Т. 6. Ч. 2.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library