RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Structure of hydrated and sulfated stannous acid. Quantum chemical modeling

PII
S3034560X25010097-1
DOI
10.7868/S3034560X25010097
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
81-90
Abstract
Different complexes of H2SnO3 and its hydrated and sulfated derivatives were studied by the quantum chemical method within the framework of the cluster approximation with the ωB97XD functional and LanL2DZ(Sn), 6-31G**(O,S,H) basis sets, and with periodic boundary conditions approach with the PBE functional and the basis of the projector-augmented plane waves. It was found that among the hydrated forms, the smallest clusters with features of a SnO2 crystal (twofold and threefold coordinated oxygen atoms and fivefold and sixfold coordinated tin atoms) are (H2SnO3)6 clusters with a diameter of the described sphere d ~ 10 Å.Their combination (in the form of globules (d ~ 20 Å), chains, films) due to hydrogen bonds with each other and water molecules is energetically favorable. It is also possible their consolidation due to covalent Sn–O–Sn and Sn–OH–Sn bonds with the formation of various larger nanoparticles, for example (H2SnO3)12.The interesting thing is that some of them are hollow structures.Sulfuric acid molecules adsorbed on the surface of (SnO2)n(H2O)m clusters are bound to the surface Sn atoms by SO4 2– anions, and the protons split off in this case complete the conduction channels, forming H3O+ and H5O2 + cations in them in addition to OH-anions and water.
Keywords
квантово-химическое моделирование функционал плотности оловянная кислота протонообменные мембраны
Date of publication
17.01.2025
Year of publication
2025
Number of purchasers
0
Views
43

References

  1. 1. Hattori T., Athoh S., Tagawa T. et al. // Preparation of Catalysts IV. Amsterdam: Elsevier, 1987. p. 113. https://shop.elsevier.com/books/preparation-of-catalysts-iv/poncelet/978-0-444-42796-0
  2. 2. Печенюк С.И. // Изв. АН. Сер. Хим. 1999. Т. 48. С. 228.
  3. 3. Kesava М., Dinakaran K. // J. Phys. Chem. C. 2021. V. 125. Р. 130. https://dx.doi.org/10.1021/acs.jpcc.0c08739
  4. 4. Scipioni R., Gazzoli D., Teocoli F. et al. // Membranes. 2014. V. 4. P. 123. https://www.mdpi.com/2077-0375/4/1/123
  5. 5. Chen F., Mecheri B., D’Epifanio A. et al. // Fuel Cells. 2010. V. 10. № 5. P. 790. https://onlinelibrary.wiley.com/doi/abs/10.1002/fuce.200900179
  6. 6. Brutti S., Scipioni R., Navarra M.A. et al. // Int. J. Nanotechnol. 2014. V. 11. P. 882. https://www.inderscienceonline.com/doi/abs/10.1504/IJNT.2014.063796
  7. 7. Фабричный П.Б., Бабешкин А.М., Портяной В.А. и др. // Журн. структур. химии. 1970. № 4. С. 772.
  8. 8. Fabrichnyi P.B., Babeshkin A.M., Portyanoi V.A. et al. // J. Struct. Chem. 1971. V. 11. P. 715. https://link.springer.com/article/10.1007/BF00743453
  9. 9. Fabrichnyi P.B., Babeshkin A.M., Nesmeyanov A.N. // J. Phys. Chem. Solids. 1970. V. 31. P. 1399. https://www.sciencedirect.com/science/article/abs/pii/0022369770901447
  10. 10. Willstuter R., Krant H., Fremery R. // Ber. 1924. Bd. 57. S. 1491.
  11. 11. Денисова Е.Ф., Плетнев Р.Н., Федотов М.А. и др. Радиоспектроскопия твердого тела. Свердловск: УНЦ АН СССР, 1984. С. 54.
  12. 12. FabritchnyiP., AfanassovM., DemazeauG. // C.R. Acad. Sc. Paris. 1986. V. 303. Ser. II. P. 1197.
  13. 13. Кострыкин А.В., Спиридонов Ф.М., Линько И.В. и др. // Журн. структур. химии. 2007. Т. 52. С. 1176.
  14. 14. Giesekke E.W., Gutowsky H.S., Kirkov P. et al. // Inorg. Chem. 1967. V. 6. P. 1294. https://pubs.acs.org/doi/10.1021/ic50053a005
  15. 15. Паршуткин В.В., Ярославцев А.Б., Прозоровская З.Н. и др. // Журн. неорган. химии. 1985. Т. 30. № 1. C. 56.
  16. 16. Brauer G. Handbook der Preparativen Anorganischen Chemie in drei Banden. Stuttgart: Ferdinand Enke Verlag, 1975.
  17. 17. Karelin A.I., Leonova L.S., Tkacheva N.S. et al. // Heliyon. 2022. V. 8. P. e11450. https://doi.org/10.1016/j.heliyon.2022.e11450
  18. 18. Liu L., Pu Y., Lu Y. et al. // J. Membr. Sci. 2021. V. 621. P. 118972. https://doi.org/10.1016/j.memsci.2020.118972
  19. 19. Navarra M.A., Abbati C., Scrosati B. // J. Power Sources. 2008. V. 183. P. 109. https://doi.org/10.1016/j.jpowsour.2008.04.033
  20. 20. Arata K. // Green Chem. 2009. V. 11. P. 1719. https://doi.org/10.1039/B822795K
  21. 21. Varala R., Narayana V., Kulakarni S.R. et al. // Arab. J. Chem. 2016. V. 9. P. 550. https://www.sciencedirect.com/science/article/pii/S1878535216300028
  22. 22. Chai J.-D., Head-Gordon M. // J. Chem. Phys. 2008. V. 128. P. 084106. https://doi.org/10.1063/1.2834918
  23. 23. Krishnan R., Binkley J.S., Seeger R. et al. // J. Chem. Phys. 1980. V. 72. P. 650. https://doi.org/10.1063/1.438955
  24. 24. Johnson B.J., Gill P.M.W., Pople J.A. // J. Chem. Phys. 1993. V.98. P. 5612. https://doi.org/10.1063/1.464906
  25. 25. Wadt W.R., Hay P.J. // J. Chem. Phys. 1985. V. 82. P. 284. https://doi.org/10.1063/1.448800
  26. 26. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
  27. 27. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  28. 28. Hafner J. // J. Comput. Chem. 2008. V.29. P. 2044. https://doi.org/10.1002/jcc.21057
  29. 29. Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. P. 558. https://doi.org/10.1103/PhysRevB.47.558
  30. 30. Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. P. 14251.
  31. 31. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. P. 11169. https://doi.org/10.1103/physrevb.54.11169
  32. 32. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758. https://doi.org/10.1103/physrevb.59.1758
  33. 33. Хьюи Дж. Неорганическая химия. М.: Химия, 1987. 695 с.
  34. 34. Страумал Е.А., Юркова Л.Л., Баранчиков А.Е. и др. // Журн. неорган. химии. 2021. Т. 66. С. 298.
  35. 35. Лермонтов С.А., Юркова Л.Л., Страумал Е.А. и др. // Журн. неорган. химии. 2018. Т. 63. С. 283.
  36. 36. Карелин А.И., Ткачева Н.С., Надхина С.Е. и др. // Журн. неорган. химии. 2016. Т. 61. С. 1201.
  37. 37. Карелин А.И., Леонова Л.С., Арсатов А.В. и др. // Журн. неорган. химии. 2013. Т. 58. С. 804.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library