- PII
- S0044457X25070102-1
- DOI
- 10.31857/S0044457X25070102
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 7
- Pages
- 945-952
- Abstract
- Relativistic discrete variation calculations of the electronic structure and the X-ray photoelectron spectrum of the valence electrons of the LrO were done. This cluster reflects the lattice fragment of lawrencium dioxides. A MO scheme of the valence molecular orbitals in the binding energy range 0 to ~50 eV was built. The Lr6d, 5f and O2p atomic orbitals were found to participate in the outer valence molecular orbitals (OVMO) formation, the Lr6p and O2s — AO atomic orbitals were found to participate in the inner valence molecular orbitals (IVMO) formation. The MO scheme allows understanding the chemical bond nature and the valence XPS spectrum in the LrO cluster. The relative contribution of the OVMO and IVMO electrons to the chemical bond covalence component was evaluated. A comparison with the valence XPS spectra of AnO of other actinides was done.
- Keywords
- электронное строение кластера LrO химическая связь метод PДВ структура спектры РФЭС валентных электронов
- Date of publication
- 25.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Rai B.K., Bretana A., Morrison G. et al. // Rep. Prog. Phys. 2024. V. 87. № 6. P. 066501. https://doi.org/10.1088/1361-6633/ad38cb
- 2. Pereiro F.A., Galley S.S., Jackson J.A. et al. // Inorg. Chem. 2024. V. 63. P. 9687. https://doi.org/10.1021/acs.inorgchem.3603828
- 3. Legg F., Harding L.M., Lewis J.C. et al. // Thin Solid Films. 2024. V. 790. P. 140194. http://dx.doi.org/10.2139/ssm.4573818
- 4. Serezhkin V.N., Serezhkina L.B. // Radiochemistry. 2022. V. 64. № 5. P. 603. https://doi.org/10.1134/S1066362222050034
- 5. Neidig M.L., Clark D.L., Martin R.L. // Coord. Chem. Rev. 2013. V. 257. P. 394. https://doi.org/10.1016/j.ccr.2012.04.029
- 6. Katz J.J., Seaborg G.T., Morse L.R. The chemistry of the actinide elements. London–New York: Chapman and Hall, 1986.
- 7. Sato T.K., Asai M., Borschevsky A. et al. // Nature. 2015. V. 520. P. 209. https://doi.org/10.1038/nature14342
- 8. Sato T.K., Sato N., Asai M. et al. // Rev. Sci. Instrum. 2013. V. 84. P. 023304. https://doi.org/10.1063/1.4789772
- 9. Bemis Jr. C.E., Dittner P.F., Silva R.J. et al. // Phys. Rev. C. 1977. V. 16. P. 1146. https://doi.org/10.1103/PhysRevC.16.1146
- 10. Huang K.N., Adjagi M., Chen M.N. et al. // At. Data Nucl. Data Tables. 1976. V. 18. P. 243. https://doi.org/10.1016/0092-640X (76)90027-9
- 11. Dzuba VA., Safronova M.S., Safronova U.I. // Phys. Rev. A. 2014. V. 90. P. 012504. https://doi.org/10.1103/PhysRevA.90.012504
- 12. Borschevsky A., Eliav E., Vilkas M.J. et al. // Eur. Phys. J. D. 2007. V. 45. P. 115. https://doi.org/10.1140/epjd/e2007-00130-9
- 13. Pershina V. // Comptes Rendus Chimie. 2020. V. 23. № 3. P. 255. https://doi.org/10.5802/crchim.25
- 14. Sevier K.D. // At. Data Nucl. Data Tables. 1979. V. 24. P. 323. https://doi.org/10.1016/0092-640X (79)90012-3
- 15. Temepun IO.A., Пупков А.Е., Тетерна А.Ю. и др. // Неорганизация. 2024. Т. 60. № 7. С. 1.
- 16. Rosen A., Ellis D.E. // J. Chem. Phys. 1975. V. 62. P. 3039. https://doi.org/10.1063/1.430892
- 17. Ellis D.E., Goodman G.L. // Int. J. Quant. Chem. 1984. V. 25. P. 185. https://doi.org/10.1002/qua.56025015
- 18. Gunnarsson O., Lundqvist B.I. // Phys. Rev. B. 1976. V. 13. P. 4274. https://doi.org/10.1103/PhysRevB.13.4274
- 19. Pyykko P., Toivonen H. // Acta Acad. Aboensis, Ser. B. 1983. P. 43.
- 20. Varshalovskii D.A., Moskalev A.N., Khersonskii V.K. Quantum Theory of Angular Momentum. Singapore: World Scientific, 1988.
- 21. Teierin Yu.A., Teierin A.Yu. // Russ. Chem. Rev. 2004. V. 73. P. 541. https://doi.org/10.1070/RC200407n06ABEH000821
- 22. Teierin Yu.A., Maslakov K.I., Teierin A.Yu. et al. // Phys. Rev. B. 2013. V. 87. P. 245108. https://doi.org/10.1103/PhysRevB.87.245108
- 23. Teierin Yu.A., Teierin A.Yu., Ivanov K.E. et al. // Phys. Rev. B. 2014. V. 89. P. 035102. https://doi.org/10.1103/PhysRevB.89.035102
- 24. Kelly P.J., Brooks M.S., Allen R. // J. Phys. Colloques. 1979. V. 40. № C4. P. 184. https://doi.org/10.1051/jphyscol:1979458
- 25. Gubanov V.A., Rosen A., Ellis D.E. // J. Phys. Chem. Solids. 1979. V. 40. P. 17. https://doi.org/10.1016/0022-3697 (79)90090-8
- 26. Yarzhensky V.G., Teierin A.Yu., Teierin Yu.A. et al. // Nucl. Techn. & Rad. Prot. 2012. V. 27. P. 103. https://doi.org/10.2298/NTRP12021037
- 27. Mulliken R.S. // Annu. Rev. Phys. Chem. 1978. V. 29. P. 1. https://doi.org/10.1146/annurev.pc.29.100178.000245