RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

THE ELECTRONIC STRUCTURE OF THE LrO CLUSTER

PII
S0044457X25070102-1
DOI
10.31857/S0044457X25070102
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 7
Pages
945-952
Abstract
Relativistic discrete variation calculations of the electronic structure and the X-ray photoelectron spectrum of the valence electrons of the LrO were done. This cluster reflects the lattice fragment of lawrencium dioxides. A MO scheme of the valence molecular orbitals in the binding energy range 0 to ~50 eV was built. The Lr6d, 5f and O2p atomic orbitals were found to participate in the outer valence molecular orbitals (OVMO) formation, the Lr6p and O2s — AO atomic orbitals were found to participate in the inner valence molecular orbitals (IVMO) formation. The MO scheme allows understanding the chemical bond nature and the valence XPS spectrum in the LrO cluster. The relative contribution of the OVMO and IVMO electrons to the chemical bond covalence component was evaluated. A comparison with the valence XPS spectra of AnO of other actinides was done.
Keywords
электронное строение кластера LrO химическая связь метод PДВ структура спектры РФЭС валентных электронов
Date of publication
25.04.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Rai B.K., Bretana A., Morrison G. et al. // Rep. Prog. Phys. 2024. V. 87. № 6. P. 066501. https://doi.org/10.1088/1361-6633/ad38cb
  2. 2. Pereiro F.A., Galley S.S., Jackson J.A. et al. // Inorg. Chem. 2024. V. 63. P. 9687. https://doi.org/10.1021/acs.inorgchem.3603828
  3. 3. Legg F., Harding L.M., Lewis J.C. et al. // Thin Solid Films. 2024. V. 790. P. 140194. http://dx.doi.org/10.2139/ssm.4573818
  4. 4. Serezhkin V.N., Serezhkina L.B. // Radiochemistry. 2022. V. 64. № 5. P. 603. https://doi.org/10.1134/S1066362222050034
  5. 5. Neidig M.L., Clark D.L., Martin R.L. // Coord. Chem. Rev. 2013. V. 257. P. 394. https://doi.org/10.1016/j.ccr.2012.04.029
  6. 6. Katz J.J., Seaborg G.T., Morse L.R. The chemistry of the actinide elements. London–New York: Chapman and Hall, 1986.
  7. 7. Sato T.K., Asai M., Borschevsky A. et al. // Nature. 2015. V. 520. P. 209. https://doi.org/10.1038/nature14342
  8. 8. Sato T.K., Sato N., Asai M. et al. // Rev. Sci. Instrum. 2013. V. 84. P. 023304. https://doi.org/10.1063/1.4789772
  9. 9. Bemis Jr. C.E., Dittner P.F., Silva R.J. et al. // Phys. Rev. C. 1977. V. 16. P. 1146. https://doi.org/10.1103/PhysRevC.16.1146
  10. 10. Huang K.N., Adjagi M., Chen M.N. et al. // At. Data Nucl. Data Tables. 1976. V. 18. P. 243. https://doi.org/10.1016/0092-640X (76)90027-9
  11. 11. Dzuba VA., Safronova M.S., Safronova U.I. // Phys. Rev. A. 2014. V. 90. P. 012504. https://doi.org/10.1103/PhysRevA.90.012504
  12. 12. Borschevsky A., Eliav E., Vilkas M.J. et al. // Eur. Phys. J. D. 2007. V. 45. P. 115. https://doi.org/10.1140/epjd/e2007-00130-9
  13. 13. Pershina V. // Comptes Rendus Chimie. 2020. V. 23. № 3. P. 255. https://doi.org/10.5802/crchim.25
  14. 14. Sevier K.D. // At. Data Nucl. Data Tables. 1979. V. 24. P. 323. https://doi.org/10.1016/0092-640X (79)90012-3
  15. 15. Temepun IO.A., Пупков А.Е., Тетерна А.Ю. и др. // Неорганизация. 2024. Т. 60. № 7. С. 1.
  16. 16. Rosen A., Ellis D.E. // J. Chem. Phys. 1975. V. 62. P. 3039. https://doi.org/10.1063/1.430892
  17. 17. Ellis D.E., Goodman G.L. // Int. J. Quant. Chem. 1984. V. 25. P. 185. https://doi.org/10.1002/qua.56025015
  18. 18. Gunnarsson O., Lundqvist B.I. // Phys. Rev. B. 1976. V. 13. P. 4274. https://doi.org/10.1103/PhysRevB.13.4274
  19. 19. Pyykko P., Toivonen H. // Acta Acad. Aboensis, Ser. B. 1983. P. 43.
  20. 20. Varshalovskii D.A., Moskalev A.N., Khersonskii V.K. Quantum Theory of Angular Momentum. Singapore: World Scientific, 1988.
  21. 21. Teierin Yu.A., Teierin A.Yu. // Russ. Chem. Rev. 2004. V. 73. P. 541. https://doi.org/10.1070/RC200407n06ABEH000821
  22. 22. Teierin Yu.A., Maslakov K.I., Teierin A.Yu. et al. // Phys. Rev. B. 2013. V. 87. P. 245108. https://doi.org/10.1103/PhysRevB.87.245108
  23. 23. Teierin Yu.A., Teierin A.Yu., Ivanov K.E. et al. // Phys. Rev. B. 2014. V. 89. P. 035102. https://doi.org/10.1103/PhysRevB.89.035102
  24. 24. Kelly P.J., Brooks M.S., Allen R. // J. Phys. Colloques. 1979. V. 40. № C4. P. 184. https://doi.org/10.1051/jphyscol:1979458
  25. 25. Gubanov V.A., Rosen A., Ellis D.E. // J. Phys. Chem. Solids. 1979. V. 40. P. 17. https://doi.org/10.1016/0022-3697 (79)90090-8
  26. 26. Yarzhensky V.G., Teierin A.Yu., Teierin Yu.A. et al. // Nucl. Techn. & Rad. Prot. 2012. V. 27. P. 103. https://doi.org/10.2298/NTRP12021037
  27. 27. Mulliken R.S. // Annu. Rev. Phys. Chem. 1978. V. 29. P. 1. https://doi.org/10.1146/annurev.pc.29.100178.000245
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library