RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

INFLUENCE OF HYDROTHERMAL SYNTHESIS CONDITIONS ON MICROSTRUCTURE CHARACTERISTICS OF COPPER NANOWIRES

PII
S0044457X25070049-1
DOI
10.31857/S0044457X25070049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 7
Pages
876-886
Abstract
The dependence of the microstructural properties of copper nanowires on temperature (110, 120 and 130°C) and time (4 and 8 h) has been studied for the hydrothermal synthesis of copper nanowires using oleylamine and dextrose. The change in diameter of the Cu nanowires formed was monitored by spectrophotometry in the visible range. X-ray diffraction analysis was used to confirm the target crystal structure and the absence of copper oxide impurities, as well as to show the nonlinear dependence of the average size of the coherent scattering region on the temperature and duration of the synthesis process. The scanning electron microscopy results showed that, in general, increasing the temperature and duration of the synthesis process leads to an increase in the length of the formed copper nanowires from 45 to 150 μm, i.e. under certain conditions, ultra-long structures are obtained. As a result, the aspect ratio varies from 782 to 2358 by altering the synthesis conditions. Transmission electron microscopy shows that the sample obtained at 110°C (4 h) differs from the others by the presence of particles up to 10 nm in size on the surface of the nanowires. The microstructural parameters of the obtained materials were also studied by atomic force microscopy, and the values of the electronic work function of the individual copper nanowire surface in ambient atmosphere were determined by Kelvin probe force microscopy.
Keywords
гидротермальный синтез медные нанопроволоки Cu-HП одномерные наноструктуры локализованный поверхностный плазмонный резонанс декстроза олеиламин тонкие пленки прозрачный электрод
Date of publication
04.05.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Huang S., Liu Y., Yang F et al. // Environ. Chem. Lett. 2022. V. 20. № 5. P. 3005. https://doi.org/10.1007/s10311-022-01471-4
  2. 2. Ding Y., Xiong S., Sun L. et al. // Chem. Soc. Rev. 2024. V. 53. № 15. P. 7784. https://doi.org/10.1039/D4CS00080C
  3. 3. Simonenko N.P., Simonenko T.L., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1265. https://doi.org/10.1134/S0036023624601685
  4. 4. Hwang H., Kim A., Zhong Z. et al. // Adv. Funct. Mater. 2016. V. 26. № 36. P. 6545. https://doi.org/10.1002/adfm.201602094
  5. 5. Arsenov P.V., Pilyushenko K.S., Mikhailova P.S. et al. // Nano-Structures Nano-Objects. 2025. V. 41. P. 101429. https://doi.org/10.1016/j.nanoso.2024.101429
  6. 6. Simonenko N.P., Simonenko T.L., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1301. https://doi.org/10.1134/S0036023624601697
  7. 7. Nam V., Lee D. // Nanomaterials. 2016. V. 6. №3. P. 47. https://doi.org/10.3390/nano6030047
  8. 8. Wang Y., Liu P., Zeng B. et al. // Nanoscale Res. Lett. 2018. V. 13. №1. P. 78. https://doi.org/10.1186/s11671-018-2486-5
  9. 9. Zhao S., Han F., Li J. et al. // Small. 2018. V. 14. №26. https://doi.org/10.1002/smll.201800047
  10. 10. Hwang C., An J., Choi B.D. et al. // J. Mater. Chem. C. 2016. V. 4. №7. P. 1441. https://doi.org/10.1039/CSTC03614C
  11. 11. Chiu J.-M., Wahdini I., Shen Y.-N. et al. // ACS Appl. Energy Mater. 2023. V. 6. №9. P. 5058. https://doi.org/10.1021/acsaem.3c00703
  12. 12. Li X., Wang Y., Yin C. et al. // J. Mater. Chem. C. 2020. V. 8. №3. P. 849. https://doi.org/10.1039/C9TC04744A
  13. 13. Yoon H., Shin D.S., Kim T.G. et al. // ACS Sustain. Chem. Eng. 2018. V. 6. №11. P. 13888. https://doi.org/10.1021/acssuschemeng.8b02135
  14. 14. Zhao Y., Zhang Y., Li Y. et al. // New J. Chem. 2012. V. 36. №5. P. 1161. https://doi.org/10.1039/c2nj210267
  15. 15. Yu L., Wang Y., Wang J. et al. // Sens. Actuators, A: Phys. 2022. V. 334. P. 113362. https://doi.org/10.1016/j.sna.2021.113362
  16. 16. Lah N.A.C., Trigueros S. // Sci. Technol. Adv. Mater. 2019. V. 20. №1. P. 225. https://doi.org/10.1080/14686996.2019.1585145
  17. 17. Kalinin I.A., Davydov A.D., Leontiev A.P. et al. // Electrochim. Acta. 2023. V. 441. P. 141766. https://doi.org/10.1016/j.electacta.2022.141766
  18. 18. Bograchev D.A., Kabanova T.B., Davydov A.D. // J. Solid State Electrochem. 2025. V. 29. №4. P. 1309. https://doi.org/10.1007/s10008-024-06118-8
  19. 19. Khalil A., Hashalsch R., Joulad M. // J. Mater. Sci. 2014. V. 49. №8. P. 3052. https://doi.org/10.1007/s10853-013-8005-2
  20. 20. Kim N.K., Kim K., Jang H. et al. // Sci. Rep. 2023. V. 13. №1. P. 22248. https://doi.org/10.1038/s41598-023-49741-7
  21. 21. Caya Huaman J.L., Urushizaki I., Jeyadevan B. // J. Nanomater. 2018. V. 2018. P. 1. https://doi.org/10.1155/2018/1698357
  22. 22. Hosseini M., Fatmehsari D.H., Marashi S.P.H. // Appl. Phys. A. 2015. V. 120. №4. P. 1579. https://doi.org/10.1007/s00339-015-9358-y
  23. 23. Koo J., Lee C., Chu C.R. et al. // Adv. Mater. Technol. 2020. V. 5. №4. https://doi.org/10.1002/admt.201900962
  24. 24. Zha X., Gong D., Chen W. et al. // Nanomaterials. 2025. V. 15. №9. P. 638. https://doi.org/10.3390/nano15090638
  25. 25. Hong W., Wang J., Wang E. // Nanoscale. 2016. V. 8. №9. P. 4927. https://doi.org/10.1039/CSNR07516E
  26. 26. Ohitenko O., Oh Y.-J. // Mater. Chem. Phys. 2020. V. 246. P. 122783. https://doi.org/10.1016/j.matchemphys.2020.122783
  27. 27. Conte A., Rosati A., Fantin M. et al. // Mater. Adv. 2024. V. 5. №22. P. 8836. https://doi.org/10.1039/D4MA00402G
  28. 28. Kim J., Kim M., Jung H. et al. // Nano Energy. 2023. V. 106. P. 108067. https://doi.org/10.1016/j.nanoen.2022.108067
  29. 29. Ravi Kumar D. V., Woo K., Moon J. // Nanoscale. 2015. V. 7. №41. P. 17195. https://doi.org/10.1039/CSNR051381
  30. 30. Duong T.-H., Kim H.-C. // Int. Nano Lett. 2017. V. 7. №2. P. 165. https://doi.org/10.1007/s40089-017-0204-4
  31. 31. Hadaoqi S., Tran G., Naitabdi A. et al. // Nanoscale. 2025. V. 17. №6. P. 3277. https://doi.org/10.1039/D4NR04079A
  32. 32. Li Y., Fan Z., Yuan X. et al. // Mater. Lett. 2020. V. 274. P. 128029. https://doi.org/10.1016/j.matlet.2020.128029
  33. 33. Ding S., Tian Y. // RSC Adv. 2019. V. 9. №46. P. 26961. https://doi.org/10.1039/C9RA04404C
  34. 34. Ravi Kumar D.V., Kim I., Zhong Z. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. №40. P. 22107. https://doi.org/10.1039/C4CP03880K
  35. 35. Lu P.-W., Jaihao C., Pan L.-C. et al. // Polymers (Basel). 2022. V. 14. №16. P. 3369. https://doi.org/10.3390/polym14163369
  36. 36. Duong T.-H., Kim H.-C. // Ind. Eng. Chem. Res. 2018. V. 57. №8. P. 3076. https://doi.org/10.1021/acs.iecr.7b04709
  37. 37. Lewis C.S., Wang L., Liu H. et al. // Cryst. Growth Des. 2014. V. 14. №8. P. 3825. https://doi.org/10.1021/cg500324j
  38. 38. Liu G., Wang J., Ge Y. et al. // ACS Nano. 2020. V. 14. №6. P. 6761. https://doi.org/10.1021/acsnano.0c00109
  39. 39. Shahzad Khan B., Mehmood T., Mukhtar A. et al. // Mater. Lett. 2014. V. 137. P. 13. https://doi.org/10.1016/j.matlet.2014.08.095
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library