ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

ГИДРОФИЛЬНЫЕ КОЛЛОИДНЫЕ ЧАСТИЦЫ CdS: СИНТЕЗ, МЕХАНИЗМ СТАБИЛИЗАЦИИ, СПЕКТРАЛЬНЫЕ, ОПТИЧЕСКИЕ И ФОТОКАТАЛИТИЧЕСКИЕ СВОЙСТВА

Код статьи
S0044457X25050022-1
DOI
10.31857/S0044457X25050022
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 5
Страницы
630-642
Аннотация
Методом химической конденсации получены гидрофильные коллоидные частицы сульфида кадмия CdS. Для формирования гидрофильной оболочки использован подход, основанный на образовании мицеллоподобной структуры вокруг наночастиц CdS за счет формирования поверхностными атомами кадмия устойчивых комплексонатов с анионами этилендиаминтетрауксусной кислоты. Изучен механизм агрегативной устойчивости наночастиц CdS в водных растворах. Исследованы оптические, спектральные и фотокаталические свойства как наноструктурированных порошков, агломерированных из гидрофобных наночастиц CdS, так и изолированных гидрофильных наночастиц CdS в коллоидном растворе.
Ключевые слова
сульфид кадмия гидрофильные коллоидные частицы оптические свойства фотокаталитические свойства
Дата публикации
11.02.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Бричкин С.Б., Разумов В.Ф. // Успехи химии. 2016. Т. 85. № 12. С. 1297. https://doi.org/10.1070/RCR4656
  2. 2. Pham D.T., Quan T., Mei S. et al. // Curr. Opin. Green Sust. Chem. 2022. V. 34. P. 100596. https://doi.org/10.1016/j.cogsc.2022.100596
  3. 3. Mamiyev Z., Balayeva N.O. // Catalysts. 2022. V. 12. P. 1316. https://doi.org/10.3390/catal12111316
  4. 4. Li Q., Li X., Yu J. // Int. Sci. Techn. 2020. V. 31. P. 313. https://doi.org/10.1016/B978-0-08-102890-2.00010-5
  5. 5. Cheng L., Xiang Q., Liao Y. et al. // Energy Environ. Sci. 2018. V. 11. P. 1362. https://doi.org/10.1039/C7EE03640J
  6. 6. Мусихин С.Ф., Александрова О.А., Лучинин В.В. и др. // Биотехносфера. 2012. № 5-6. С. 40. https://cyberleninka.ru/article/n/poluprovodnikovye-nanokristally-v-biomeditsinskih-issledovaniyah/viewer
  7. 7. Han K., Yoon S., Chung W.J. // Int. J. Appl. Glass Sci. 2015. V. 6. № 2. P. 103. https://doi.org/10.1111/ijag.12115
  8. 8. Смагин В.П., Давыдов Д.А., Унжакова Н.М. и др. // Журн. неорган. химии. 2015. Т. 60. № 12. С. 1734. https://doi.org/10.7868/S0044457X15120247
  9. 9. Сумм Б.Д., Иванова Н.И. // Успехи химии. 2000. Т. 69. № 11. С. 995. https://doi.org/10.1070/RC2000v069n11ABEH000616
  10. 10. Peyre V., Spalla O., Belloni L. et al. // J. Coll. Inter. Sci. 1997. V. 187. № 1. P. 184. https://doi.org/10.1006/jcis.1996.4692
  11. 11. Singh N.B., Devi T.C., Singh T.D. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1690. https://doi.org/10.1134/S0036023623601782
  12. 12. Кожевникова Н.С., Ворох А.С., Ремпель А.А. // Журн. общей химии. 2010. Т. 80. № 2. С. 365. https://doi.org/10.1134/S1070363210030035
  13. 13. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. P. 301. https://doi.org/10.1107/S0021889895014920
  14. 14. Ordejon P., Artacho E., Soler J.M. // Phys. Rev. B. 1996. V. 53. P. R10441. http://dx.doi.org/10.1103/PhysRevB.53.R10441
  15. 15. García A., Papior N., Akhtar A. et al. // J. Chem. Phys. 2020. V. 152. P. 204108. https://doi.org/10.1063/5.0005077
  16. 16. Zelaya-Angel O., de L. Castillo-Alvarado F., Avendailo-Lopez J. et al. // Solid State Commun. 1997. V. 104. № 3. P. 161. https://doi.org/10.1016/S0038-1098 (97)00080-X
  17. 17. Rossetti R., Nakahara S., Brus L.E. // J. Chem. Phys. 1983. V. 79. № 2. P. 1086. https://doi.org/10.1063/1.445834
  18. 18. Nozik A.J., Williams F., Nenadovic M.T. et al. // J. Phys. Chem. 1985. V. 89. № 3. P. 397. https://doi.org/10.1021/j100249a004
  19. 19. Weller H., Koch U., Gutierrez M. et al. // Phys. Chem. 1984. V. 88. P. 649. https://doi.org/10.1002/bbpc.19840880715
  20. 20. Fojtik A., Weller H., Koch U. et al. // Phys. Chem. 1984. V. 88. № 10. P. 969. https://doi.org/10.1002/bbpc.19840881010
  21. 21. Li W., Walther C.F.J., Kuc A. et al. // J. Chem. Theory Comput. 2013. V. 9. № 7. P. 2950. https://doi.org/10.1021/ct400235w
  22. 22. Клюев В.Г., Фам Тхи Хан Мьен, Бездетко Ю.С. // Конденсированные среды и межфазные границы. 2014. T. 16. № 1. C. 27. https://journals.vsu.ru/kcmf/article/view/800
  23. 23. Davydyuk H.Ye., Kevshyn A.H., Bozhko V.V. et al. // Semiconductors. 2009. V. 43. № 11. P. 1401. https://doi.org/10.1134/S1063782609110013
  24. 24. Kulp B.A. // Phys. Rev. 1962. V. 125. P. 1865. https://doi.org/10.1103/PhysRev.125.1865
  25. 25. Ramsden J.J., Grätzel M. // J. Chem. Soc. Faraday Trans. 1984. V. 80. № 1. P. 919. https://doi.org/10.1039/F19848000919
  26. 26. Morozova N.K., Danilevich N.D., Kanakhin A.A. // Phys. Status Solidi C. 2010. V. 7. № 6. P. 1501. https://doi.org/10.1002/pssc.200983229
  27. 27. Morozova N.K. New in the optics of II-VI-O compounds (New possibilities of optical diagnostics of single-crystal systems with defects). Riga: LAP LAMBERT Academic Publishing, 2021. 214 p.
  28. 28. Морозова Н.К., Данилевич Н.Д. // Физика и техника полупроводников. 2010. Т. 44. № 4. С. 458. https://doi.org/10.1134/S1063782610040056
  29. 29. Пугачевский М.А., Мамонтов В.А., Николаева С.Н. и др. // Изв. Юго-Западного гос. ун-та. Сер. Техника и технологии. 2021. Т. 11. № 2. С. 104.
  30. 30. Дятлова Н.М., Темкина В.Я., Колпакова И.Д. Комплексоны. М.: Химия, 1970. 416 c.
  31. 31. Nowack B. // Environ. Sci. Technol. 2002. V. 36. № 19. P. 4009. https://doi.org/10.1021/es025683s
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека