RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis of granulated hydrophobic magnetic sorbents and composite sponges based on Fe3O4/Zn-Al-LDH for oil pollution removal

PII
S0044457X25030165-1
DOI
10.31857/S0044457X25030165
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
445-454
Abstract
In this study, we present a novel surface modification approach for magnetic composite materials based on Fe3O4/Zn-Al layered double hydroxides (LDH) to enhance their hydrophobic properties. We have systematically investigated the interaction mechanisms between various surfactants (stearate, oleate, and sodium dodecyl sulfate) and the Fe3O4/Zn-Al-LDH surface. Our research examined how ethanol-mediated hydrophobization affects the material's porous and crystalline structure. We developed innovative synthesis routes for both granulated and sponge-like magnetic sorbents utilizing melamine-formaldehyde resin as a binding matrix. Under optimized conditions, the resulting Fe3O4-LDH-ST granulated sorbents and MEL-Fe3O4/LDH-ST sponge-like materials demonstrated exceptional oil sorption capacities of 0.60 and 21.36 g/g, respectively, combined with significant magnetic susceptibility, enhanced hydrophobicity, and excellent regeneration potential. These engineered materials show promise for marine oil spill remediation and environmental monitoring applications.
Keywords
нефтесорбенты слоистые двойные гидроксиды меланин-формальдегидная смола нанопористые материалы гидрофобность
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Huang L., Liow J., Lim K. et al. // Adv. Sustain. Syst. 2024. V. 8. № 8. https://doi.org/10.1002/adsu.202300659
  2. 2. Riyal I., Sharma H., Dwivedi C. // Groundw. Sustain. Dev. 2024. V. 26. P. 101274. https://doi.org/10.1016/j.gsd.2024.101274
  3. 3. Paul J., Qamar A., Ahankari S.S. et al. // Carbohydr. Polym. 2024. V. 338. P. 122198. https://doi.org/10.1016/j.carbpol.2024.122198
  4. 4. Vialkova E., Korshikova E., Fugaeva A. // Water. 2024. V. 16. № 18. P. 2626. https://doi.org/10.3390/w16182626
  5. 5. Li A., Huber T., Barker D. et al. // Carbohydr. Polym. 2024. V. 343. P. 122432. https://doi.org/10.1016/j.carbpol.2024.122432
  6. 6. Chakraborty S., Tripathi A. // J. Water Process Eng. 2024. V. 67. P. 106242. https://doi.org/10.1016/j.jwpe.2024.106242
  7. 7. Liu Z., Gao B., Zhao P. et al. // Sep. Purif. Technol. 2024. V. 337. P. 126347. https://doi.org/10.1016/j.seppur.2024.126347
  8. 8. Papynov E.K., Dran’kov A.N., Tkachenko I.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 6. P. 820. https://doi.org/10.1134/S0036023620060157
  9. 9. Tkachenko I.A., Panasenko A.E., Odinokov M.M. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1142. https://doi.org/10.1134/S0036023620080173
  10. 10. Shapkin N.P., Panasenko A.E., Khal’chenko I.G. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1614. https://doi.org/10.1134/S0036023620100186
  11. 11. Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 7. P. 879. https://doi.org/10.1134/S0036023617070129
  12. 12. Seliverstov E.S., Pisarenko A.S., Yapryntsev M.N. et al. // Ceram. Int. 2024. № September. P. 10. https://doi.org/10.1016/j.ceramint.2024.11.024
  13. 13. Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 1010. https://doi.org/10.1134/S0036023619080060
  14. 14. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1291. https://doi.org/10.1134/S0036023624601715
  15. 15. Ivanov N.P., Drankov A.N., Papynov E.K. et al. // Prot. Met. Phys. Chem. Surfaces. 2023. V. 59. № 5. P. 868. https://doi.org/10.1134/S2070205123701058
  16. 16. Bian K., Guo H., Lai Z. et al. // Sep. Purif. Technol. 2025. V. 358. № PB. P. 130263. https://doi.org/10.1016/j.seppur.2024.130263
  17. 17. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 622. https://doi.org/10.1134/S0036023622050175
  18. 18. Fadeev V.V., Tronov A.P., Tolchev A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 5. P. 538. https://doi.org/10.1134/S0036023623600478
  19. 19. Duan J., Jia P., Liu Z. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1646. https://doi.org/10.1134/S0036023624601624
  20. 20. Gowda A.H.D., Mendke T., Srilakshmi C. // J. Porous Mater. 2024. V. 31. № 3. P. 959. https://doi.org/10.1007/s10934-024-01576-x
  21. 21. Sobhana S.S.L., Zhang X., Kesavan L. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2017. V. 522. P. 416. https://doi.org/10.1016/j.colsurfa.2017.03.025
  22. 22. Dutta K., Pramanik A. // Chem. Commun. 2013. V. 49. № 57. P. 6427. https://doi.org/10.1039/c3cc42260g
  23. 23. Qiao W., Bai H., Tang T. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2019. V. 577. P. 118. https://doi.org/10.1016/j.colsurfa.2019.05.046
  24. 24. Santosa S.J., Krisbiantoro P.A., Minh Ha T.T. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2021. V. 614. P. 126159. https://doi.org/10.1016/j.colsurfa.2021.126159
  25. 25. Chengqian F., Wanbing L., Yimin D. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2023. P. 130921. https://doi.org/10.1016/j.colsurfa.2023.130921
  26. 26. Balybina V.A., Dran’kov A.N., Shichalin O.O. et al. // J. Compos. Sci. 2023. V. 7. № 11. P. 458. https://doi.org/10.3390/jcs7110458
  27. 27. Ivanov N.P., Dran A.N., Shichalin O.O. et al. // Prot. Met. Phys. Chem. Surf. 2023. V. 59. № 5. P. 868. https://doi.org/10.1134/S2070205123701058
  28. 28. Rajabi M., Abolhosseini M., Hosseini-Bandegharaei A. et al. // Microchem. J. 2020. V. 159. P. 105450. https://doi.org/10.1016/j.microc.2020.105450
  29. 29. Biata N.R., Jakavula S., Mashile G.P. et al. // Hydrometallurgy. 2020. V. 197. P. 105447. https://doi.org/10.1016/j.hydromet.2020.105447
  30. 30. Jung I.K., Jo Y., Han S.C. et al. // Sci. Total Environ. 2020. V. 705. P. 135814. https://doi.org/10.1016/j.scitotenv.2019.135814
  31. 31. Gao Y., Xing H., Zhang Y. // Sep. Purif. Technol. 2025. V. 354. № July 2024. P. 128721. https://doi.org/10.1016/j.seppur.2024.128721
  32. 32. Khumsap S., Parapichai N., Lertsarawut P. et al. // Radiat. Phys. Chem. 2025. V. 226. № May 2024. P. 112287. https://doi.org/10.1016/j.radphyschem.2024.112287
  33. 33. Ghasemi F., Jamshidi M., Ghamarpoor R. // Water Resour. Ind. 2024. V. 32. P. 100268. https://doi.org/10.1016/j.wri.2024.100268
  34. 34. Tomon T.R.B., Omisol C.J.M., Aguinid B.J.M. et al. // Sci. Rep. 2024. V. 14. № 1. P. 1. https://doi.org/10.1038/s41598-024-64178-2
  35. 35. Akanji I.O., Iwarere S.A., Sani B.S. et al. // Chem. Eng. Sci. 2024. V. 298. № November 2023. P. 120383. https://doi.org/10.1016/j.ces.2024.120383
  36. 36. Tomkowiak K., Mazela B., Szubert Z. et al. // Molecules. 2024. V. 29. № 19. P. 4661. https://doi.org/10.3390/molecules29194661
  37. 37. Saleem S., Khalid S., Nazir A. et al. // RSC Adv. 2024. V. 14. № 35. P. 25393. https://doi.org/10.1039/d4ra03924f
  38. 38. Farahat M., Sobhy A., Sanad M.M.S. // Sci. Rep. 2022. V. 12. № 1. P. 1. https://doi.org/10.1038/s41598-022-15187-6
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library