- Код статьи
- S0044457X25030072-1
- DOI
- 10.31857/S0044457X25030072
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 70 / Номер выпуска 3
- Страницы
- 357-367
- Аннотация
- Представлен синтез слоистого сложного карбида состава (Cr,V)C с применением реакционного искрового плазменного спекания (ИПС) и гидротермального кислотного травления. Методами РЭМ и ПЭМ проведено детальное исследование макро- и наноструктуры на каждом этапе синтеза. Подтверждено наличие характерных особенностей образования двумерного карбида в виде частиц и фрагментов мультислойной структуры на макро- и наноуровне. С применением ЭДС и РФА исследован элементный и фазовый состав образцов, в результате установлено, что исходная ожидаемая MAX-фаза Cr2VAlC2 в составе образца, полученного ИПС, отсутствует. При этом обнаружена фаза смешанного биметаллического карбида (Cr,V)C на всех стадиях синтеза, для которого параметры кристаллической решетки, включая объем элементарной ячейки, значительно изменяются после кислотного травления. Очевидные изменения в объемной и кристаллической структуре (Cr,V)C соответствуют образованию двумерных наночастиц в составе синтезированного материала. Исследование магнитных характеристик показало, что все образцы обладают магнитным гистерезисом с относительно низкими показателями коэрцитивной силы и величины соотношения остаточной намагниченности к намагниченности насыщения. Низкотемпературные измерения показали незначительное увеличение магнитного момента при понижении температуры для образца, полученного в условиях реакционного ИПС до кислотного травления в HF, без существенного изменения в магнитном поведении образцов.
- Ключевые слова
- двумерные материалы слоистые структуры магнитные материалы искровое плазменное спекание реакционное спекание ИПС
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 13
Библиография
- 1. Cao Y., Xing G., Lin H. et al. // iScience. 2020. V. 23. № 10. P. 101614. https://doi.org/10.1016/j.isci.2020.101614
- 2. Zhang Q., Zhang Z., Li C. et al. // Chip. 2023. V. 2. № 4. P. 1. https://doi.org/10.1016/j.chip.2023.100059
- 3. Zhao H., Yun J., Li Z. et al. // Mater. Sci. Eng. R Reports. 2024. V. 161. P. 100873. https://doi.org/10.1016/j.mser.2024.100873
- 4. Telegin A.V., Namsaraev Z.Z., Bessonov V.D. et al. // Mod. Electron. Mater. 2024. V. 10. № 1. P. 51. https://doi.org/10.3897/j.moem.10.1.130290
- 5. Samardak A.Y., Sobirov M.I., Rogachev K.A. et al. // Small. 2024. V. 2401270. P. 1. https://doi.org/10.1002/smll.202401270
- 6. Lv L., Zhang P., Yang X. et al. // Surfaces and Interfaces. 2024. V. 44. № September 2023. P. 103678. https://doi.org/10.1016/j.surfin.2023.103678
- 7. Ahmadi B., Montazer M.N., Bozorg A. et al. // MXenes synthesis and characterization, in: MXenes as Surface-Active Adv. Mater., Elsevier. 2024, P. 33–61. https://doi.org/10.1016/B978-0-443-13589-7.00022-5
- 8. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. P. 1. https://doi.org/10.1134/S0036023624601703
- 9. Alam M.S., Chowdhury M.A., Khandaker T. et al. // RSC Adv. 2024. V. 14. № 37. P. 26995. https://doi.org/10.1039/D4RA03714F
- 10. Shichalin O.O., Ivanov N.P., Seroshtan A.I. et al. // Ceram. Int. 2024. https://doi.org/10.1016/j.ceramint.2024.10.161
- 11. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
- 12. Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors 2023. V. 11. № 1. P. 1. https://doi.org/10.3390/chemosensors11010007
- 13. Ateş S., Süzer I., Erol A.M. et al. // ITU J. Metall. Mater. Eng. 2024. P. 16.
- 14. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1838. https://doi.org/10.1134/S0036023622601222
- 15. Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. P. 142. https://doi.org/10.3390/chemosensors11020142
- 16. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. P. 1. https://doi.org/10.1134/S0036023624600850
- 17. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601727
- 18. He J., Frauenheim T. // J. Phys. Chem. Lett. 2020. V. 11. № 15. P. 6219. https://doi.org/10.1021/acs.jpclett.0c02007
- 19. Yadav A., Agarwal S., Khan S. // 2D Metal Carbides and Nitrides (MXenes) in Water Treatment, 2024. https://doi.org/10.1007/978-981-99-8010-9_5
- 20. Si C., Zhou J., Sun Z. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 31. P. 17510. https://doi.org/10.1021/acsami.5b05401
- 21. He J., Lyu P., Sun L.Z. et al. // J. Mater. Chem. 2016. V. 4. № 27. P. 6500. https://doi.org/10.1039/c6tc01287f
- 22. He J., Frauenheim T. // J. Phys. Chem. Lett. 2020. V. 11. № 15. P. 6219. https://doi.org/10.1021/acs.jpclett.0c02007
- 23. Gutierrez-Ojeda S.J., Ponce-Pérez R., Guerrero-Sánchez J. et al. // Graphene 2D Mater. 2024. V. 9. № 1–2. P. 47. https://doi.org/10.1007/s41127-023-00068-0
- 24. Zou X., Liu H., Xu H. et al. // Mater. Today Energy. 2021. V. 20. P. 100668. https://doi.org/10.1016/j.mtener.2021.100668
- 25. Akinola O., Chakraborty I., Celio H. et al. // J. Mater. Res. 2021. V. 36. № 10. P. 1980. https://doi.org/10.1557/s43578-021-00258-7