RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Rapid hydrolysis of the CuSO4 salt solution microdroplets deposited on the alkaline solution and the formation of ordered arrays of open microspheres with Cu(OH)2 walls

PII
S0044457X25020151-1
DOI
10.31857/S0044457X25020151
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 2
Pages
292-300
Abstract
It was shown for the first time that open microspheres 1–10 µm in size with Cu(OH)2 walls and unique morphology are formed as reactions of rapid hydrolysis of copper (II) cations when microdroplets of aqueous CuSO4 solution are sprayed on the surface of alkaline solution of Na2SO4 at room temperature and without the use of surfactants. It has been shown that the microspheres formed under these conditions have a single hole in their walls with a size ranging from fractions to units of a micrometer and they are oriented on the surface of the alkaline solution with this hole facing towards the air. These microspheres can be transferred to various substrates using a vertical elevator technique, where they are deposited in layers with their holes predominantly oriented in the opposite direction from the substrate. It has been found that the walls of these microspheres are several hundred nanometers thick and are composed of a combination of Cu(OH)2 nanocrystals, and nanorods, with a diameter 5–10 nm and a length up to 500 nm. When the samples are heated in air at 150°C, these nanocrystals lose water and form CuO single crystals without significant changes in their morphology. It was found that applying layers of microspheres to the surfaces of various substrates gives it superhydrophilic properties.
Keywords
Cu(OH)2 СuO открытые микросферы аэрозоль супергидрофильность
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Pavlikov A.Y., Saikova S.V., Samoilo A.S. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 265. https://doi.org/10.1134/S0036023623603057
  2. 2. Zhang Q., Zhang K., Xu D. et al. // Prog. Mater. Sci. 2014. V. 60. P. 208. https://doi.org/10.1016/j.pmatsci.2013.09.003
  3. 3. Батищева Е.В., Толстой В.П. // Журн. неорган. xимии. 2022. T. 67. № 6. C. 836. https://doi.org/10.31857/S0044457X22060058
  4. 4. Zhu D., Wang L., Yu W. et al. // Sci Rep. 2018. V. 8. P. 5282. https://doi.org/10.1038/s41598-018-23174-z
  5. 5. Sadale S.B., Patil S.B., Teli A.M. et al. // Solid State Sci. 2022. V. 123. P. 106780. https://doi.org/10.1016/j.solidstatesciences.2021.106780
  6. 6. Андрийченко Е.О., Зеленов В.И., Бовыка В.Е. и др. // Журн. общ. химии. 2021. T. 91. № 4. С. 638. https://doi.org/10.31857/S0044460X2104020X
  7. 7. Nevezhina A.V., Fadeeva T.V. // Acta Biomed. Sci. 2021. V. 6. № 6-2. P. 37. https://doi.org/10.29413/ABS.2021-6.6-2.5
  8. 8. Nigussie A., Murthy A., Bedassa A. // Res. J. Chem. Environ. 2021. V. 25. № 6. P. 202.
  9. 9. Rabbani M., Rahimi R., Bozorgpour M. et al. // Mater. Lett. 2014. V. 119. P. 39. http://dx.doi.org/10.1016/j.matlet.2013.12.095
  10. 10. Umar A., Ibrahim A., Ammar H. et al. // Ceram. Int. 2021. V. 47. P. 12084. https://doi.org/10.1016/j.ceramint.2021.01.053
  11. 11. Liu D., Liu Y., Bao E. et al. // J. Energy Storage. 2023. V. 68. P. 107875. https://doi.org/10.1016/j.est.2023.107875
  12. 12. Wang J., Liu Y., Wang S. et al. // J. Mater. Chem. A. 2014. V. 2. P. 1224. https://doi.org/10.1039/c3ta14135g
  13. 13. Jiao S., Zhang X., Zhang G. et al. // J. Mater. Chem. A. 2018. V. 7. P. 3084. https://doi.org/10.1039/C7TA10632G
  14. 14. Kumar M.A., Debabrata P. // ACS Appl. Energy Mater. 2021. V. 4. № 9. P. 9412. https://doi.org/10.1021/acsaem.1c01632.s001
  15. 15. Ma H., Tan Y., Liu Z et al. // Nanomaterials. 2021. V. 11. P. 104. https://doi.org/10.3390/nano11010104
  16. 16. Liu X., Xiong H., Yang Y. et al. // ACS Omega. 2018. V. 3. P. 13146. https://doi.org/10.1021/acsomega.8b01299
  17. 17. Meng D., Liu D., Wang G. et al. // Vacuum. 2017. V. 144. P. 272. http://dx.doi.org/10.1016/j.vacuum.2017.08.013
  18. 18. Ai Y., Pang Q., Liu X. et al. // Nanomaterials. 2024. V. 14. P. 1145. https://doi.org/10.3390/nano14131145
  19. 19. Molkenova A., Sarsenov S., Atabaev S. et al. // Environ. Nanotechnol., Monit. Manage. 2021. V. 16. P. 100507. https://doi.org/10.1016/j.enmm.2021.100507
  20. 20. Cho Y., Huh Y. // Bull. Korean Chem. Soc. 2009. V. 30. № 6. P. 1410.
  21. 21. Dong F., Guo Y., Zhang D. et al. // Nanomaterials. 2020. V. 10. P. 67. https://doi.org/10.3390/nano10010067
  22. 22. Tolstoy V.P., Meleshko A.A., Golubeva A.A. et al. // Colloids Interfaces. 2022. V. 6. № 2. P. 32. https://doi.org/10.3390/colloids6020032
  23. 23. Tolstoy V.P., Meleshko A.A., Danilov D.V. // Mendeleev Commun. 2024. V. 34. № 3. P. 430. https://doi.org/10.1016/j.mencom.2024.04.038
  24. 24. Golubeva A.A., Kolesnikov I.E., Tolstoy V.P. // Ceram. Int. V. 50. № 24. P. 56025. https://doi.org/10.1016/j.ceramint.2024.11.025
  25. 25. Zheng Q., Wei Y., Zeng X. et al. // Nanotechnology. 2020. V. 31. № 42. P. 425402. https://doi.org/10.1088/1361-6528/ab9f74
  26. 26. Das S., Srivastava V.C. // Mater. Lett. 2015. V. 150. P. 130. http://dx.doi.org/10.1016/j.matlet.2015.03.018
  27. 27. Zhang F., Huang S., Guo Q. et al. // Colloids Surf. 2020. V. 602. P. 125076. https://doi.org/10.1016/j.colsurfa.2020.125076
  28. 28. Jaggi V.H., Oswazd H.R. // Acta Cryst. 1961. V. 14. P. 1041. https://doi.org/10.1107/S0365110X61003016
  29. 29. Jansanthea P., Saovakon C., Chomkitichai W. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 667. https://doi.org/10.1134/S0036023621050089
  30. 30. Yin Y., Zhu L., Chang X. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 45. P. 50962. https://doi.org/10.1021/acsami.0c11677
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library