ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Исследование фазовых равновесий в стабильном треугольнике NaCl–Na2CrO4–RbI четырехкомпонентной взаимной системы Na+,Rb+||Cl,I ,CrO42–

Код статьи
S0044457X25020124-1
DOI
10.31857/S0044457X25020124
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 2
Страницы
268-273
Аннотация
Исследована четырехкомпонентная взаимная система Na+,Rb+||Cl,I,CrO4 2–, низкоплавкие составы на основе которой перспективны для разработки электролитов для химических источников тока и теплоаккумулирующих материалов. Проведено разбиение системы на стабильные симплексы с помощью теории графов и построено древо фаз системы, в состав которого входят три стабильных тетраэдра, связанных между собой двумя стабильными треугольниками. С помощью дифференциального термического и термогравиметрического анализов изучены фазовые равновесия в стабильном треугольнике NaCl–Na2CrO4–RbI и определена температура плавления и содержание компонентов в трехкомпонентной эвтектике: 430°С, NaCl – 20%, Na2CrO4 – 48%, RbI – 32% (экв.). Состав кристаллизующихся в эвтектике фаз подтвержден методом рентгенофазового анализа.
Ключевые слова
физико-химический анализ электролит дифференциальный термический анализ эвтектика рентгенофазовый анализ
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Liu M., Saman W., Bruno F. // Renew. Sustain. Energy Rev. 2012. V. 16. № 4. Р. 2118. https://doi.org/10.1016/j.rser.2012.01.020
  2. 2. Kenisarin M.M. // Renew. Sustain. Energy Rev. 2010. V. 14. № 3. Р. 955. https://doi.org/10.1016/j.rser.2009.11.011
  3. 3. Бабаев Б.Д. // Теплофизика высоких температур. 2014. Т. 52. № 5. С. 760. https://doi.org/10.1134/S0018151X14050010
  4. 4. Гаркушин И.К., Матвеев А.А., Сухаренко М.А. // Журн. неорган. химии. 2023. Т. 68. № 12. С. 1792. https://doi.org/10.31857/S0044457X23700253
  5. 5. Бурчаков А.В., Гаркушин И.К., Емельянова У.А. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 952. https://doi.org/10.31857/S0044457X22602085
  6. 6. Егорова А.С., Сухаренко М.А., Кондратюк И.М. и др. // Неорган. материалы. 2023. Т. 59. № 8. С. 904. https://doi.org/10.31857/S0002337X23080043
  7. 7. Финогенов А.А., Гаркушин И.К., Фролов Е.И. // Физика и химия стекла. 2022. Т. 48. № 6. С. 783. https://doi.org/10.31857/S0132665121100152
  8. 8. Yu-Ting Wu, Shan-Wei Liu, Ya-Xuan Xiong et al. // Appl. Therm. Eng. 2015. V. 89. P. 748. https://doi.org/10.1016/j.applthermaleng.2015.06.054
  9. 9. Лихачева С.С., Егорова Е.М., Гаркушин И.К. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 958. https://doi.org/10.31857/S0044457X20070144
  10. 10. Ritchie A., Wilmont H. // J. Power Sources. 2006. V. 162. P. 809.
  11. 11. Gong Q., Ding W., Bonk A. et al. // J. Power Sources. 2020. V. 475. P. 228674. https://doi.org/10.1016/j.jpowsour.2020.228674
  12. 12. Вердиев Н.Н., Гаркушин И.К., Бурчаков А.В. и др. // Неорган. материалы. 2020. Т. 56. № 11. С. 1243. https://doi.org/10.31857/S0002337X20110159
  13. 13. Li H., Yin H., Wang K. et al. // Adv. Energy Mater. 2016. V. 6. № 14. P. 1600483. https://doi.org/10.1002/aenm.201600483
  14. 14. Фролов Е.И., Финогенов А.А., Гаркушин И.К. и др. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 384. https://doi.org/10.31857/S0044457X20030034
  15. 15. Губанова Т.В., Кравец Н.С., Гаркушин И.К. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 509. https://doi.org/10.31857/S0044457X22601924
  16. 16. Коврижкина Н.А., Кузнецова В.А., Силаева А.А. и др. // Тр. ВИАМ. 2020. № 12. С. 96.
  17. 17. Лихачева С.С., Дворянова Е.М., Гаркушин И.К. // Журн. неорган. химии. 2016. T. 61. № 10. С. 105. https://doi.org/10.7868/S0044457X16010141
  18. 18. Егорова Е.М., Гаркушин И.К., Кондратюк И.М. и др. // Журн. неорган. химии. 2020. T. 65. № 4. С. 528. https://doi.org/10.31857/S0044457X20040042
  19. 19. Посыпайко В.И., Алексеева Е.А. Диаграммы плавкости солевых систем. Тройные взаимные системы. М.: “Химия”, 1977. 392 с.
  20. 20. Бабенко А.В., Егорова Е.М., Гаркушин И.К. // Журн. неорган. химии. 2019. T. 64. № 7. С. 746. https://doi.org/10.1134/S0044457X1907002X
  21. 21. Посыпайко В.И., Алексеева Е.А. Диаграммы плавкости солевых систем. Ч. III. Двойные системы с общим катионом. М.: “Металлургия”, 1979. 204 с.
  22. 22. Посыпайко В.И., Алексеева Е.А. Диаграммы плавкости солевых систем. Тройные системы. М.: “Химия”, 1977. 328 с.
  23. 23. Посыпайко В.И., Алексеева Е.А., Васина Н.А. Диаграммы плавкости солевых систем. Ч. I. Двойные системы с общим анионом. Справочник // М.: “Металлургия”, 1977. 416 с.
  24. 24. Посыпайко В.И., Алексеева Е.А., Васина Н.А. Диаграммы плавкости солевых систем. Ч. II. Двойные системы с общим анионом. Справочник // М.: “Металлургия”, 1977. 304 с.
  25. 25. Воскресенская Н.К., Евсеева Н.Н., Беруль С.И., Верещатина И.П. Справочник по плавкости систем из безводных неорганических солей // М.: Изд-во АН СССР, 1961. Т.1. 845 с.
  26. 26. Игнатьева Е.О., Дворянова Е.М., Гаркушин И.К. // Журн. неорган. химии. 2017. T. 62. № 2. С. 245. https://doi.org/10.7868/S0044457X17020076
  27. 27. Воскресенская Н.К., Евсеева Н.Н, Беруль С.И., Верещатина И.П. Справочник по плавкости систем из безводных неорганических солей. М.: Изд-во АН СССР, 1961. Т.2. 585 с.
  28. 28. Коршунов Б.Г., Сафонов В.В., Дробот Д.В. Фазовые равновесия в галогенидных системах. М.: “Металлургия”, 1979. 286 с.
  29. 29. Уэндландт У. Термические методы анализа. М.: Мир, 1978. 528 с.
  30. 30. Васина Н.А., Грызлова Е.С., Шапошникова С.Г. Теплофизические свойства многокомпонентных солевых систем. М.: Химия, 1984. 112 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека