ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Адсорбент на основе активированного угля и оксида железа для извлечения тетрациклина из жидких сред

Код статьи
S0044457X25020075-1
DOI
10.31857/S0044457X25020075
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 2
Страницы
201-211
Аннотация
Порошки, содержащие березовый активированный уголь (БАУ) и оксид железа (FexOy) с различным соотношением компонентов (80/20 и 20/80 мас. %), синтезированы методом химического соосаждения солей железа в присутствии NH4OH. Оценка морфологии, текстуры и структуры полученных композитов выполнена с помощью методов лазерной дифракции, растровой электронной микроскопии, низкотемпературной адсорбции-десорбции азота, дифракции рентгеновских лучей. Выявлено, что синтезированные порошки представляют собой мезопористые материалы. Исследованы сорбционные свойства угля, оксида железа и железосодержащих композитов по отношению к лекарственному соединению тетрациклину. Установлено, что эффективность сорбции антибиотика увеличивается в ряду FexOy < БАУ < БАУ/FexOy-20/80 < БАУ/FexOy-80/20. Кинетика адсорбции тетрациклина на исследуемых порошках описана уравнениями реакций псевдопервого и псевдовторого порядка.
Ключевые слова
активированный уголь оксид железа адсорбция тетрациклин
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Ali A., Shah T., Ullah R. et al. // Front. Chem. 2021. V. 9. P. 629054. https://doi.org/10.3389/fchem.2021.629054
  2. 2. Vargas-Ortiz J.R., Gonzalez C., Esquivel K. // Processes. 2022. V. 10. P. 2282. https://doi.org/10.3390/pr10112282
  3. 3. Cai N., Larese-Casanova P. // Nanomaterials. 2020. V. 10. P. 213. https://doi.org/10.3390/nano10020213
  4. 4. Толмачева В.В., Апяри В.В., Кочук Е.В. и др. // Журн. аналит. химии. 2016. Т. 71. № 4. С. 339. https://doi.org/10.7868/S0044450216040071
  5. 5. Папынов Е.К., Номеровский А.Д., Азон А.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 11. С. 1449. https://doi.org/10.31857/S0044457X2011015X
  6. 6. Yew Y.P., Shameli K., Miyake M. et al. // Arab. J. Chem. 2020. V. 13. P. 2287. https://doi.org/10.1016/j.arabjc.2018.04.013
  7. 7. Mashkoor F., Nasar A. // J. Magn. Magn. Mater. 2020. V. 500. P. 166408. https://doi.org/10.1016/j.jmmm.2020.166408
  8. 8. Shukla S., Khan R., Daverey A. // Environ. Technol. Innov. 2021. V. 24. P. 101924. https://doi.org/10.1016/j.eti.2021.101924.
  9. 9. Lu J., Jiao X., Chen D. et al. // J. Phys. Chem. 2009. V. 113. P. 4012. https://doi.org/10.1021/jp810583e
  10. 10. Akiba Fexy J.D.H. // Int. J. Sci. Eng. Res. 2018. V. 9. № 7. P. 324.
  11. 11. Roth H-C., Schwaminger S.P., Schindler M. et al. // J. Magn. Magn. Mater. 2015. V. 377. P. 81. https://doi.org/10.1016/j.jmmm.2014.10.074
  12. 12. Dudchenko N., Pawar S., Perelshtein I. et al. // Materials. 2022. V. 15. P. 2601. https://doi.org/10.3390/ma15072601
  13. 13. Шилова О.А., Николаев А.М., Коваленко А.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 398. https://doi.org/10.31857/S0044457X20030137
  14. 14. Santoso E., Ediati R., Kusumawati Y. et al. // Mater. Today Chem. 2020. V. 16. P. 100233. https://doi.org/10.1016/j.mtchem.2019.100233
  15. 15. Liu Q., Cao X., Yue T. et al. // Environ. Sci. Pollut. Res. 2023. V. 30. P. 87185. https://doi.org/10.1007/s11356-023-28685-5
  16. 16. Савицкая Т.А., Шахно Е.А., Гриншпан Д.Д. и др. // Высокомолек. соед. Серия А. 2019. Т. 61. № 3. С. 209. https://doi.org/10.1134/S230811201903012X
  17. 17. Shan D., Deng S., Zhao T. et al. // J. Hazard. Mater. 2016. V. 305. P. 156. https://doi.org/10.1016/j.jhazmat.2015.11.047
  18. 18. Koonaphapdeelert S., Moran J., Aggarangsi P., Bunkham A. // Energy Sustain. Devel. 2018. V. 43. P. 196. https://doi.org/10.1016/j.esd.2018.01.010
  19. 19. Li R., Sun W., Xia L. et al. // Molecules. 2022. V. 27. P. 7980. https://doi.org/10.3390/molecules27227980
  20. 20. Бондаренко Л.С., Магомедов И.С., Терехова В.А. и др. // Журн. прикл. химии. 2020. Т. 93. № 8. С. 1160. https://doi.org/10.31857/S0044461820080125
  21. 21. Reguyal F., Sarmah A.K., Gao W. // J. Hazard. Mater. 2017. V. 321. P. 868. https://doi.org/10.1016/j.jhazmat.2016.10.006
  22. 22. Daghrir R., Drogui P. // Environ. Chem. Lett. 2013. V. 11. P. 209. https://doi.org/10.1007/s10311-013-0404-8
  23. 23. Avisar D., Primor O., Gozlan I. et al. // Water Air Soil Pollut. 2010. V. 209. P. 439. https://doi.org/10.1007/s11270-009-0212-8
  24. 24. Sing K.S.W. // Adv. Colloid Interfacе Sci. 1998. V. 76–77. P. 3. https://doi.org/10.1016/S0001-8686 (98)00038-4
  25. 25. Aligizaki K.K. Pore Structure of Cement-Based Materials: Testing Interpretation and Requirements (Modern Concrete Technology). N. Y.: Taylor & Francis, 2005. 432 p.
  26. 26. Guinier A. X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies. N. Y.: Dover Books on Physics, 2001. 378 p.
  27. 27. Гришин И.С., Смирнов Н.Н., Смирнова Д.Н. // Физика и химия обработки материалов. 2022. № 6. С. 33. https://doi.org/10.30791/0015-3214-2022-6-33-43
  28. 28. Алексеева О.В., Смирнова Д.Н., Носков А.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 8. C. 1021. https://doi.org/10.31857/S0044457X23600299
  29. 29. Rodrigues S.C., Silva M.C., Torres J.A. et al. // Water Air Soil Pollut. 2020. V. 231. № 294. https://doi.org/10.1007/s11270-020-04610-1
  30. 30. Baabu P.R.S., Kumar H.K., Gumpu M.B. et al. // Materials. 2023. V. 16. № 1. P. 59. https://doi.org/10.3390/ma16010059
  31. 31. Maity D., Agrawal D.C. // J. Magn. Magn. Mater. 2007. V. 308. № 1. P. 46. https://doi.org/10.1016/j.jmmm.2006.05.001
  32. 32. Nazari P., Askari N., Setayesh S.R. // Chem. Eng. Commun. 2018. V. 207. P. 665. https://doi.org/10.1080/00986445.2019.1613233
  33. 33. Алексеева О.В., Шипко М.Н., Смирнова Д.Н. и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2022. № 3. С. 23. https://doi.org/10.31857/S1028096022030025
  34. 34. Chen K., Wang G.H., Li W.B. et al. // Chin. Chem. Lett. 2014. V. 25. № 11. P. 1455. https://doi.org/10.1016/j.cclet.2014.06.014
  35. 35. Ho Y-S. // Scientometrics. 2004. V. 59. № 1. P. 171.
  36. 36. Cazetta A.L., Vargas A.M.M., Nogami E.M. et al. // Chem. Eng. J. 2011. V. 174. № 1. P. 117. https://doi.org/10.1016/j.cej.2011.08.058
  37. 37. Qiu H., Lv L., Pan B.-c. et al. // J. Zhejiang Univ. Sci. 2009. V. 10. P. 716. https://doi.org/10.1631/jzus.A0820524
  38. 38. Lian L., Lv J., Wang X., Lou D. // J. Chromatogr. A. 2018. V. 1534. P. 1. https://doi.org/10.1016/j.chroma.2017.12.041
  39. 39. Dai J., Meng X., Zhanga Y., Huang Y. // Bioresource Technol. 2020. V. 311. P. 123455. https://doi.org/10.1016/j.biortech.2020.123455
  40. 40. Hoslett J., Ghazal H., Katsou E., Jouhara H. // Sci. Total Environ. 2021. V. 751. P. 141755. https://doi.org/10.1016/j.scitotenv.2020.141755
  41. 41. Chen Y., Wang F., Duan L. et al. // J. Mol. Liq. 2016. V. 222. P. 487. http://dx.doi.org/10.1016/j.molliq.2016.07.090
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека