- Код статьи
- S0044457X25010082-1
- DOI
- 10.31857/S0044457X25010082
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 70 / Номер выпуска 1
- Страницы
- 73-80
- Аннотация
- С помощью DFT-расчетов показана возможность стабилизации гексагональной сотовой формы борофена посредством смешанного допирования в системе B6Ga2Mg4, где плоский лист борофена размещен между двумя слоями, сформированными атомами магния и галлия. B6Ga2Mg4 представляет собой относительно мягкий материал с металлической проводимостью. Оценка термодинамической устойчивости этого соединения показала, что плавление будет происходить при температуре выше 1200 K.
- Ключевые слова
- двумерные материалы DFT-расчеты зонная структура механические свойства термическая стабильность
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 17
Библиография
- 1. Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. № 5696. P. 666. https://doi.org/10.1126/science.1102896
- 2. Castro Neto A.H., Guinea F., Peres N.M.R. et al. // Rev. Mod. Phys. 2009. V. 81. № 1. P. 109. https://doi.org/10.1103/RevModPhys.81.109
- 3. Yang X., Xu M., Qiu W. et al. // J. Mater. Chem. 2011. V. 21. № 22. P. 8096. https://doi.org/10.1039/c1jm10697j
- 4. Wang Q.H., Kalantar-Zadeh K., Kis A. et al. // Nat. Nanotechnol. 2012. V. 7. № 11. P. 699. https://doi.org/10.1038/nnano.2012.193
- 5. Radisavljevic B., Radenovic A., Brivio J. et al. // Nat. Nanotechnol. 2011. V. 6. № 3. P. 147. https://doi.org/10.1038/nnano.2010.279
- 6. Chen Y.L., Analytis J.G., Chu J.-H. et al. // Science. 2009. V. 325. № 5937. P. 178. https://doi.org/0.1126/science.1173034
- 7. Jariwala D., Sangwan V.K., Lauhon L.J. et al. // ACS Nano. 2014. V. 8. № 2. P. 1102. https://doi.org/10.1021/nn500064s
- 8. Miao N., Xu B., Bristowe N.C. et al. // J. Am. Chem. Soc. 2017. V. 139. № 32. P. 11125. https://doi.org/10.1021/jacs.7b05133
- 9. Kumar H., Frey N.C., Dong L. et al. // ACS Nano. 2017. V. 11. № 8. P. 7648. https://doi.org/10.1021/acsnano.7b02578
- 10. Tan C., Cao X., Wu X.-J. et al. // Chem. Rev. 2017. V. 117. № 9. P. 6225. https://doi.org/10.1021/acs.chemrev.6b00558
- 11. Xu M., Liang T., Shi M. et al. // Chem. Rev. 2013. V. 113. № 5. P. 3766. https://doi.org/10.1021/cr300263a
- 12. Gribanova T.N., Minyaev R.M., Minkin V.I. et al. // Struct. Chem. 2020. V. 31. № 6. P. 2105. https://doi.org/10.1007/s11224-020-01606-9
- 13. Kaneti Y.V., Benu D.P., Xu X. et al. // Chem. Rev. 2022. V. 122. № 1. P. 1000. https://doi.org/10.1021/acs.chemrev.1c00233
- 14. Yadav S., Sadique M.A., Kaushik A. et al. // J. Mater. Chem. B. 2022. V. 10. № 8. P. 1146. https://doi.org/10.1039/d1tb02277f
- 15. Wang Z.-Q., Lü T.-Y., Wang H.-Q. et al. // Front. Phys. 2019. V. 14. № 3. P. 33403. https://doi.org/10.1007/s11467-019-0884-5
- 16. An J.M., Pickett W.E. // Phys. Rev. Lett. 2001. V. 86. № 19. P. 4366. https://doi.org/10.1103/PhysRevLett.86.4366
- 17. Kortus J., Mazin I.I., Belashchenko K.D. et al. // Phys. Rev. Lett. 2001. V. 86. № 20. P. 4656. https://doi.org/10.1103/PhysRevLett.86.4656
- 18. Choi H.J., Roundy D., Sun H. et al. // Nature. 2002. V. 418. № 6899. P. 758. https://doi.org/10.1038/nature00898
- 19. Gribanova T.N., Minyaev R.M., Minkin V.I. // Chem. Phys. 2019. V. 522. P. 44. https://doi.org/10.1016/j.chemphys.2019.02.008
- 20. Gribanova T.N., Minyaev R.M., Minkin V.I. // Struct. Chem. 2018. V. 29. № 1. P. 327. https://doi.org/10.1007/s11224-017-1031-y
- 21. Gribanova T.N., Minyaev R.M., Minkin V.I. // Struct. Chem. 2017. V. 28. № 2. P. 357. https://doi.org/10.1007/s11224-016-0886-7
- 22. Gribanova T.N., Minyaev R.M., Minkin V.I. // Mendeleev Commun. 2016. V. 26. № 6. P. 485. https://doi.org/10.1016/j.mencom.2016.11.008
- 23. Steglenko D.V., Gribanova T.N., Minyaev R.M. // J. Phys. Chem. C. 2023. V. 127. № 31. P. 15533. https://doi.org/10.1021/acs.jpcc.3c02427
- 24. John D., Nharangatt B., Chatanathod R. // J. Mater. Chem. C. 2019. V. 7. № 37. P. 11493. https://doi.org/10.1039/c9tc03628h
- 25. Tang H., Ismail-Beigi S. // Phys. Rev. B. 2009. V. 80. № 13. P. 134113. https://doi.org/10.1103/PhysRevB.80.134113
- 26. Penev E.S., Kutana A., Yakobson B.I. // Nano Lett. 2016. V. 16. № 4. P. 2522. https://doi.org/10.1021/acs.nanolett.6b00070
- 27. Steglenko D.V., Gribanova T.N., Minyaev R.M. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 60. https://doi.org/10.1134/s0036023622601477
- 28. Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
- 29. Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
- 30. Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
- 31. Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. №. 1. P. 15. https://doi.org/10.1016/0927-0256 (96)00008-0
- 32. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- 33. Blöchl P.E. // Phys. Rev. B. 1994. V. 50. № 24. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
- 34. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- 35. Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- 36. Togo A., Tanaka I. // Scripta Mater. 2015. V. 108. P. 1. https://doi.org/10.1016/j.scriptamat.2015.07.021
- 37. Nosé S. // J. Chem. Phys. 1984. V. 81. № 1. P. 511. https://doi.org/10.1063/1.447334
- 38. Koichi M., Fujio I. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1272. https://doi.org/10.1107/S0021889811038970
- 39. Stokes H.T., Hatch D.M. // J. Appl. Crystallogr. 2005. V. 38. № 1. P. 237. https://doi.org/10.1107/S0021889804031528
- 40. Emsley J. The elements. Oxford, 1991.
- 41. Mouhat F., Coudert F.-X. // Phys. Rev. B. 2014. V. 90. № 22. P. 224104. https://doi.org/10.1103/PhysRevB.90.224104
- 42. Lubarda V.A., Chen M.C. // J. Mech. Mater. Struct. 2008. V. 3. № 1. P. 153. https://doi.org/10.2140/jomms.2008.3.153
- 43. Wei X., Fragneaud B., Marianetti C.A. et al. // Phys. Rev. B. 2009. V. 80. № 20. P. 205407. https://doi.org/10.1103/PhysRevB.80.205407
- 44. Cadelano E., Palla P.L., Giordano S. et al. // Phys. Rev. B. 2010. V. 82. № 23. P. 235414. https://doi.org/10.1103/PhysRevB.82.235414
- 45. Klintenberg M., Lebègue S., Ortiz C. et al. // J. Phys.: Condens. Matter. 2009. V. 21. № 33. P. 335502. https://doi.org/10.1088/0953-8984/21/33/335502
- 46. Lee C., Wei X., Kysar J.W. et al. // Science. 2008. V. 321. № 5887. P. 385. https://doi.org/10.1126/science.1157996
- 47. Kudin K.N., Scuseria G.E., Yakobson B.I. // Phys. Rev. B. 2001. V. 64. № 23. P. 235406. https://doi.org/10.1103/PhysRevB.64.235406
- 48. Peng Q., Ji W., De S. // Comput. Mater. Sci. 2012. V. 56. P. 11. https://doi.org/10.1016/j.commatsci.2011.12.029
- 49. Falin A., Cai Q., Santos E.J.G. et al. // Nat. Commun. 2017. V. 8. № 1. P. 15815. https://doi.org/10.1038/ncomms15815
- 50. Cooper R.C., Lee C., Marianetti C.A. et al. // Phys. Rev. B. 2013. V. 87. № 3. P. 035423. https://doi.org/10.1103/PhysRevB.87.035423
- 51. Bertolazz S., Brivio J., Kis A. // ACS Nano. 2011. V. 5. № 12. P. 9703. https://doi.org/10.1021/nn203879f
- 52. Steglenko D.V., Tkachenko N.V., Boldyrev A.I. et al. // J. Comput. Chem. 2020. V. 41. № 15. P. 1456. https://doi.org/10.1002/jcc.26189
- 53. Fedik N., Steglenko D.V., Muñoz-Castro A. et al. // J. Phys. Chem. C. 2021. V. 125. № 31. P. 17280. https://doi.org/10.1021/acs.jpcc.1c02939
- 54. Peng Q., Wen X., De S. // RSC Adv. 2013. V. 3. № 33. P. 13772. https://doi.org/10.1039/c3ra41347k
- 55. Şahin H., Cahangirov S., Topsakal M. et al. // Phys. Rev. B. 2009. V. 80. № 15. P. 155453. https://doi.org/10.1103/PhysRevB.80.155453
- 56. Ding J., Xu M., Guan P.F. et al. // J. Chem. Phys. 2014. V. 140. № 6. P. 064501. https://doi.org/10.1063/1.4864106
- 57. Sun J., Liu P., Wang M. et al. // Sci. Rep. 2020. V. 10. № 1. P. 3408. https://doi.org/10.1038/s41598-020-60416-5