RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Preparation of high-entropy layered double hydroxides with a hydrotalcite structure

PII
S0044457X25010043-1
DOI
10.31857/S0044457X25010043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
33-41
Abstract
High-entropy hexacationic layered double hydroxides of the cationic composition MgNiCoAlFeY were obtained by five different methods: coprecipitation at constant pH, coprecipitation at constant or variable pH followed by hydrothermal treatment, microwave assisted solvothermal, hydrothermal, mechanochemical method followed by hydrothermal treatment. All samples, except for the one obtained by coprecipitation at variable pH, are phase pure, with a uniform distribution of cations. The samples were characterized by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, transmission electron microscopy. Thermal transformations of the samples were studied. The synthesis method affects the characteristics of the samples. The sample obtained by hydrothermal synthesis at variable pH possesses magnetic properties. The largest particles and those morphologically close to the hexagonal shape are formed by coprecipitation followed by hydrothermal treatment. The sample obtained by the microwave assisted solvothermal method is characterized by lower thermal stability.
Keywords
соосаждение гидротермальная обработка микроволновый синтез механохимический синтез
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Yeh J.-W. // JOM. 2013. V. 65. № 12. P. 1759. https://doi.org/10.1007/s11837-013-0761-6
  2. 2. Yeh J.-W., Chen S.-K., Lin S.-J. et al. // Adv. Eng. Mater. 2004. V. 6. № 5. P. 299. https://doi.org/10.1002/adem.200300567
  3. 3. Musicó B.L., Gilbert D., Ward T.Z. et al. // APL Mater. 2020. V. 8. № 4. P. 040912. https://doi.org/10.1063/5.0003149
  4. 4. Teplonogova М.А., Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Inorg. Chem. 2022. V. 61. № 49. Р. 19817. https://doi.org/10.1021/acs.inorgchem.2c02950
  5. 5. Cavani F., Trifirò F., Vaccari A. // Catal. Today. 1991. V. 11. № 2. Р. 173. https://doi.org/10.1016/0920-5861 (91)80068-K
  6. 6. Третьяков Ю.Д., Елисеев А.В., Лукашин А.В. // Успехи химии. 2004. Т. 73. № 9. С. 974.
  7. 7. Mohapatra L., Parida K. // J. Mater. Chem. A. 2016. V. 4. № 28. P. 10744. https://doi.org/10.1039/C6TA01668E
  8. 8. Zümreoglu-Karan B., Ay A.N. // Chem. Pap. 2012. V. 66. № 1. P. 1. https://doi.org/10.2478/s11696-011-0100-8
  9. 9. Mishra G., Dash B., Pandey S. // Appl. Clay Sci. 2018. V. 153. P. 172. https://doi.org/10.1016/j.clay.2017.12.021
  10. 10. Sonoyama N., Takagi K., Yoshida S. et al. // Appl. Clay Sci. 2020. V. 186. P. 105440. https://doi.org/10.1016/j.clay.2020.105440
  11. 11. Patel R., Park J.T., Patel M. et al. // J. Mater. Chem. A. 2018. V. 6. № 1. P. 12. https://doi.org/10.1039/C7TA09370E
  12. 12. Miura A., Ishiyama S., Kubo D. et al. // J. Ceram. Soc. Jpn. 2020. V. 128. № 7. P. 336. https://doi.org/10.2109/jcersj2.20001
  13. 13. Gu K., Zhu X., Wang D. et al. // J. Energy Chem. 2021. V. 60. P. 121. https://doi.org/10.1016/j.jechem.2020.12.029
  14. 14. Jing J., Liu W., Li T. et al. // Catalysts. 2024. V. 14. № 3. P. 171. https://doi.org/10.3390/catal14030171
  15. 15. Junchuan Y., Wang F., He W. et al. // Chem. Commun. 2023. V. 59. P. 3719. https://doi.org/10.1039/D2CC06966K
  16. 16. Hao M., Chen J., Chen J. et al. // J. Colloid Interface Sci. 2023. V. 642. P. 41. https://doi.org/10.1016/j.jcis.2023.03.152
  17. 17. Nguyen T.X., Tsai C.-C., Nguyen V.T. et al. // Chem. Eng. J. 2023. V. 466. P. 143352. https://doi.org/10.1016/j.cej.2023.143352
  18. 18. Wang F., Zou P., Zhang Y. et al. // Nat. Commun. 2023. V. 14. P. 6019. https://doi.org/10.1038/s41467-023-41706-8
  19. 19. Ding Y., Wang Z., Liang Z. et al. // Adv. Mater. 2023. P. e2302860. https://doi.org/10.1002/adma.202302860
  20. 20. Li S., Tong L., Peng Z. et al. // J. Mater. Chem. A. 2023. V. 11. P. 13697. https://doi.org/10.1039/D3TA01454A
  21. 21. Wu H., Zhang J., Lu Q. et al. // ACS Appl. Mater. Interfaces. 2023. V. 15. № 32. P. 38423. https://doi.org/10.1021/acsami.3c05781
  22. 22. Kim M., Oh I., Choi H. et al. // Cell Rep. Phys. Sci. 2022. V. 3. № 1. P. 100702. https://doi.org/10.1016/j.xcrp.2021.100702
  23. 23. Zhu Z., Zhang Y., Kong D. et al. // Small. 2024. V. 20. P. 2307754. https://doi.org/10.1002/smll.202307754
  24. 24. Knorpp A.J., Zawisza A., Huangfu S. et al. // RSC Adv. 2022. V. 12. № 40. Р. 26362. https://doi.org/10.1039/D2RA05435C
  25. 25. Агафонов А.В., Шибаева В.Д., Краев А.С. и др. // Журн. неорган. химии. 2023. T. 68. № 1. С. 4.
  26. 26. Leont’eva N.N., Drozdov V.D., Bel’skaya O.B., Cherepanova S.V. // Russ. J. Gen. Chem. 2020. V. 90. № 3. P. 509. https://doi.org/10.1134/S1070363220030275
  27. 27. Benício L.P.F., Eulálio D., Guimarães L. de M. et al. // Mater. Res. 2018. V. 21 № 6. P. e20171004. https://doi.org/10.1590/1980-5373-MR-2017-1004
  28. 28. Нестройная О.В., Рыльцова И.Г., Япрынцев М.Н., Лебедева О.Е. // Неорган. материалы. 2020. Т. 56. № 7. С. 788.
  29. 29. Silambarasan M., Ramesh P.S., Geetha D., Venkatachalam V. // J. Mater. Sci.: Mater. Electron. 2017. V. 28. P. 6880. https://doi.org/10.1007/s10854-017-6388-6
  30. 30. Rost C.M., Sachet E., Borman T. et al. // Nat. Commun. 2015. V. 6. P. 1. https://doi.org/10.1038/ncomms9485
  31. 31. Dippo O.F., Vecchio K.S. // Scripta Mater. 2021. P. 113974. https://doi.org/10.1016/j.scriptamat.2021.113974
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library