RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Low-temperature synthesis and luminescent properties of lanthanum metaphosphate LaP3O9 : Tb

PII
S0044457X25010035-1
DOI
10.31857/S0044457X25010035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
26-32
Abstract
Promising for inorganic luminophores, terbium-doped lanthanum metaphosphates La1-xTbxP3O9 (x = 0.05, 0.1, 0.2, 0.3, 0.4) were synthesised by extraction-pyrolytic method at low temperature in comparison with known methods. The crystal structure and optical properties of the obtained samples were characterised by X-ray phase analysis, IR and luminescence spectroscopy, and the unit cell parameters were calculated. Сompounds having rhombic structure, pr. gr. C 222 1, were obtained in the temperature range of 500–900°C. All parameters of the unit cell decrease linearly with the introduction of terbium into lanthanum metaphosphate. La1-xTbxP3O9 compounds show intense luminescence in the region of 450–650 nm. The La0.8Tb0.2P3O9 sample obtained in one hour annealing at pyrolysis temperature of 900°C shows maximum luminescence intensity.
Keywords
метафосфаты лантана тербий допирование люминесценция
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Zhou C., Dong P., Ga P. et al. // Spectrochim. Acta, Part A. 2024. V. 313. P. 124102. https://doi.org/10.1016/j.saa.2024.124102
  2. 2. Patel L., Mehta M., Sharma R. // IJCRT. 2023. V. 11. № 2. P. 444.
  3. 3. Возняк-Левушкина В.С., Арапова А.А., Спасский Д.А. и др. // ФТТ. 2022. Т. 64. № 12. С. 1925. https://doi.org/10.21883/FTT.2022.12.53644.449
  4. 4. Dongyan Y., Xingya W., Gongqin Y. et al. // Mater. Rev. 2020. V. 34. P. 41.
  5. 5. Барановская В.Б., Карпов Ю.А., Петрова К.В. и др. // Изв. ВУЗов. Цветн. металлургия. 2020. № 6. С. 4. https://doi.org/10.17073/0021-3438-2020-6-4-23
  6. 6. Седов В.А., Гляделова Я.Б., Асабина Е.А. и др. // Журн. неорган. химии. 2023. T. 68. № 3. С. 291. https://doi.org/10.31857/S0044457X22601602
  7. 7. Singh V., Ravita Kaur S. et al. // Optik. 2021. V. 244. P. 167323. https://doi.org/10.1016/j.ijleo.2021.167323
  8. 8. Fang M-H., Bao Z., Huang W-T. et al. // Chem. Rev. 2022. V. 122. № 13. P. 11474. https://doi.org/10.1021/acs.chemrev.1c00952
  9. 9. Farooq M., Rafiq H., Shah A.I. et al. // ECS J. Solid State Sci. Technol. 2023. V. 12. № 12. P. 126002. https://doi.org/10.1149/2162-8777/ad1062
  10. 10. Krutyak N., Spassky D., Deyneko D.V. et al. // Dalton Trans. 2022. V. 51. P. 11840.
  11. 11. Zhang X., Chen P., Wang Z. et al. // Solid State Sci. 2016. V. 58. P. 80. https://doi.org/10.1016/j.solidstatesciences.2016.06.002
  12. 12. Wang Y., Wang D. // J. Solid State Chem. 2007. V. 180. № 12. P. 3450. https://doi.org/10.1016/j.jssc.2007.10.008
  13. 13. Kononets N.V., Seminko V.V., Maksimchuk P.O. et al. // Low Temp. Phys. 2017. V. 43. № 8. P. 1009. https://doi.org/10.1063/1.5001311
  14. 14. Yuan J-L., Zhang H., Zhao J-T. et al. // Opt. Mater. 2008. V. 30. № 9. P. 1369. https://doi.org/10.1016/j.optmat.2007.07.004
  15. 15. Wu C., Wang Y., Wang D. // Electrochem. Solid-State Lett. 2008. V. 11. № 2. Р. J9. https://doi.org/10.1149/1.2809168
  16. 16. Briche S., Zambon D., Chadeyron G. et al. // J. Sol-Gel Sci. Technol. 2010. V. 55. P. 41. https://doi.org/10.1007/s10971-010-2211-z
  17. 17. Onishi T., Hatada N., Kuramitsu A. et al. // J. Cryst. Growth. 2013. V. 380. № 1. P. 78. https://doi.org/10.1016/j.jcrysgro.2013.06.001
  18. 18. Singh V., Yadav A., Rao A.S. et al. // Optik. 2020. V. 206. P. 164239. https://doi.org/10.1016/j.ijleo.2020.164239
  19. 19. Hachani S., Moine B., El-akrmi A. et al. // J. Lumin. 2010. V. 130. P. 1774. https://doi.org/10.1016/j.jlumin.2010.04.009
  20. 20. Yang J., Jia X., Zeng X. et al. // J. Mater. Sci. 2015. V. 50. P. 4405. https://doi.org/10.1007/s10853-015-8996-y
  21. 21. Стеблевская Н.И., Белобелецкая М.В., Медков М.А. Люминофоры на основе оксидов редких и редкоземельных металлов: экстракционно-пиролитический синтез и свойства. Функциональные керамические и композитные материалы практического назначения: синтез, свойства, применение. Владивосток: Изд-во ВВГУ, 2022. 240 с. https://doi.org/10/12466/0677-0-2022
  22. 22. Стеблевская Н.И., Белобелецкая М.В. // Хим. технология. 2023. Т. 24. № 1. С. 15.
  23. 23. Стеблевская Н.И., Белобелецкая М.В. // Журн. неорган. химии. 2023. T. 68. № 7. С. 913. https://doi.org/10.31857/S0044457X22602280
  24. 24. Matuszewski J., Kropiwnicka J., Znamierowska T. // J. Solid State Chem. 1988. V. 75. P. 285.
  25. 25. Бугаенко Л.Т., Рябых С.М., Бугаенко А.Л. // Вестн. Моск. ун-та. Сер. 2. Химия. 2008. Т. 49. № 6. С. 363.
  26. 26. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A – Theory and Applications in Inorganic Chemistry. N.-Y.: John Wiley and Sons, 2009.
  27. 27. Blasse G., Grabmaier B.C. Luminescent materials. Berlin: Springer-Verlag, 1994. 233 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library