RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Preparation and antibacterial properties of aluminium oxide and silver nanocomposites

PII
S0044457X25010023-1
DOI
10.31857/S0044457X25010023
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
14-25
Abstract
This work has demonstrated the possibility of obtaining dispersed nanocompositions based on aluminium oxide and metallic silver. The compositions can be obtained in a single reaction cycle using precursors in the form of aqueous solutions containing aluminium and silver nitrates and an organic component: polyvinyl alcohol, polyvinyl pyrrolidone, glycine, glycerol. Electron microscopy and X-ray studies have shown that silver nanoparticles are in contact with the surface of alumina aggregates containing phases of hydrated aluminium oxide, α-Al2O3, low temperature modifications of aluminium oxide. The absence of photocatalytic activity of the samples in the degradation reactions of methyl orange dye is shown. At the same time, the obtained samples of compositions possess antibacterial properties acceptable for practical application. The samples obtained from precursors with polyvinyl alcohol and polyvinylpyrrolidone, subjected to a final heat treatment at a temperature of 850 °C for 8 hours, had the best characteristics in this respect during experiments on cultures of Escherichia coli (E. coli).
Keywords
оксид алюминия серебро нанокомпозиции синтез в реакциях горения бактерицидные свойства
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Gabrielyan L.S., Trchounian A.A. // J. Belarus. State University. Biology. 2020. V. 3. P. 64. https://doi.org/10.33581/2521-1722-2020-3-64-71
  2. 2. Meleshko А.A., Afinogenova A.G., Afinogenov G.E. et al. // Russ. J. Infection Immunity. 2020. V. 10. № 4. P. 639. https://doi.org/10.15789/2220-7619-AIA-1512
  3. 3. Dorovskikh S.I., Vikulova E.S., Sergeevichev D.S. et al. // Coatings. 2023. V. 13. P. 1269. https://doi.org/10.3390/coatings13071269
  4. 4. Smolle M.A., Bergovec M., Scheipl S. et al. // Scient. Rep. 2022. V. 12. P. 13041. https://doi.org/10.1038/s41598-022-16707-0
  5. 5. Sergeevichev D.S., Dorovskikh S.I., Vikulova E.S. et al. // Int. J. Mol. Sci. 2024. V. 25. № 2. P. 1100. https://doi.org/10.3390/ijms25021100
  6. 6. Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. // Успехи химии. 2008. Т. 77. № 3. С. 242.
  7. 7. Степанов А.Л. // Журн. техн. физ. 2004. Т. 74. № 2. С. 1.
  8. 8. Спешилов И.О., Вартанян М.А., Ваграмян Т.А. // Успехи в химии и химической технологии. 2016. Т. 30. № 3. С. 59.
  9. 9. Закатилова Е.И., Уянга Т., Меркушкин А.О., Обручиков А.В. // Успехи в химии и химической технологии. 2014. Т. 28. № 6. С. 95.
  10. 10. Максимов Г.В., Сазонтова Т.Г., Коваленко С.С. и др. // Вестн. Моск. ун-та. Сер. 2. Химия. 2015. Т. 56. № 3. С. 158.
  11. 11. Ostroushko A.A., Russkikh O.V. // Nanosyst.: Phys. Chem. Math. 2017. V. 8. № 4. P. 476. https://doi.org/10.17586/2220-8054-2017-8-4-476-502
  12. 12. Остроушко А.А., Максимчук Т.Ю., Пермякова А.Е., Русских О.В. // Журн. неорган. химии. Т. 67. № 6. С. 727. https://doi.org/10.31857/S0044457X22060186
  13. 13. Остроушко А.А., Адамова Л.В., Ковеза Е.В. и др. // Журн. неорган. химии. 2018. Т. 92. № 3. С. 423. https://doi.org/10.7868/S0044453718030214
  14. 14. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. // Chem. Rev. 2016. V. 116. № 23. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
  15. 15. Chick L.A., Pederson L.R., Maupin G.D. et al. // Mater. Lett. 1990. V. 10. № 12. P. 6. https://doi.org/10.1016/0167-577X (90)90003-5
  16. 16. Aruna S.T. Solution combustion synthesis. Concise Encyclopedia of Self Propagating High Temperature Synthesis. 2017. P. 344.
  17. 17. Popkov V.I., Almjasheva O.V., Nevedomskyi V.N. et al. // Ceram. Int. 2018. V. 44. № 17. P. 20906. https://doi.org/10.1016/j.ceramint.2018.08.097
  18. 18. Martinson K.D., Belyak V.E., Sakhno D.D. et al. // J. Alloys Compd. 2022. V. 894. P. 162554. https://doi.org/10.1016/j.jallcom.2021.162554
  19. 19. Ostroushko A.A., Russkikh O.V., Maksimchuk T.Yu. // Ceram. Int. 2021. V. 47. № 15. P. 21905. https://doi.org/10.1016/j.ceramint.2021.04.20
  20. 20. Ломанова Н.А., Томкович М.В. Данилович Д.П. и др. // Неорган. материалы. 2020. Т. 56. № 12. С. 1342. https://doi.org/10.31857/S0002337X20120118
  21. 21. Popkov V.I., Almjasheva O.V., Semenova A.S. et al. // J. Mater. Sci: Materials in Electronics. 2017. V. 28. № 10. P. 7163. https://doi.org/10.1007/s10854-017-6676-1
  22. 22. Almjasheva O.V., Lomanova N.A., Popkov V.I. et al. // Nanosyst.: Phys. Chem. Math. 2019. V. 10. № 4. P. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437
  23. 23. Zang S., Chang S., Shahzad M.B. et al. // Rev. Adv. Mater. Sci. 2019. V. 58. P. 82. https://doi.org/10.1515/rams-2019-0010
  24. 24. Wilczewska A.Z., Niemirowicz K., Markiewicz K.H. et al. // Pharmacol. Rep. 2012. V. 64. № 5. P. 1020. https://doi.org/10.1016/S1734-1140 (12)70901-5
  25. 25. Kapoor S., Hegde R., Bhattacharyya A.J. // J. Control. Release. 2009. V. 140. № 1. P. 34. https://doi.org/10.1016/j.jconrel.2009.07.015
  26. 26. Das S.K., Kapoor S., Yamada H. et al. // Micropor. Mesopor. Mat. 2009. V. 118. № 1–3. P. 267. https://doi.org/10.1016/j.micromeso.2008.08.042
  27. 27. Добровольский Д.С., Беловощев Н.А., Насырова Л.А. и др. // Успехи в химии и химической технологии. 2017. Т. 31. № 13. С. 31.
  28. 28. Fedoročková A., Sučik G., Plešingerová B. et al. // RSC Adv. 2020. V. 10. P. 32423. https://doi.org/10.1039/D0RA06544G
  29. 29. Лямина Г.В., Илела А.Э., Двилис Э.С. и др. // Бутлеровские чтения. 2013. Т. 33. № 3. С. 55.
  30. 30. Остроушко А.А., Вылков А.И., Жуланова Т.Ю. и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2023. Т. 15. С. 799. https://doi.org/10.26456/pcascnn/2023.15.799
  31. 31. Петина Л.П., Левинтер М.Е. // Изв. ВУЗов. Химия и хим. технология. 1980. Т. 23. № 4. С. 919.
  32. 32. Gates B.K., Katzer J.R., Schuit G.C.A. Chemistry of Catalytic Processes. N.Y.: McCraw-Hill Book Company, 1979. 464 p. Гейтс Б., Кетцир Дж., Шуйт Д. Химия каталитических процессов. М.: Мир, 1981. 342 с.
  33. 33. Ostroushko A.A. // Inorg. Mater. 2004. V. 40. № 3. P. 259. https://doi.org/10.1023/B:INMA.0000020524.35838.de
  34. 34. Галимзянова Р.Ю. Современные композиционные материалы в производстве медицинской техники. Казань, 2021. 89 с.
  35. 35. Липпенс Б.К., Стеггерда И.И. Активная окись алюминия. Строение и свойства адсорбентов и катализаторов / Под ред. Линсена Б.Н. М.: Мир, 1973. 288 с.
  36. 36. Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. М., 2010. 288 с.
  37. 37. Бакшеев Е.О. Разработка технологии производства трехмаршрутных катализаторов с высокой каталитической активностью и устойчивостью к термической дезактивации. Дис. … канд. техн. наук. Екатеринбург, 2023. https://elar.urfu.ru/bitstream/10995/128095/1/urfu2579_d.pdf; urfu2579_d.pdf.
  38. 38. Алешина Л.А., Сидорова О.В., Струневская А.Л. // Тр. Кольского НЦ РАН. 2018. Т. 9. № 2. С. 498. https://doi.org/10.25702/KSC.2307-5252.2018.9.1.498-502
  39. 39. Коровин М.С., Фоменко А.Н., Бакина О.В., Лернер М.И. // Сибирский онкологический журнал. 2016. Т. 15. № 6. С. 35. https://doi.org/10.21294/1814-4861-2016-15-6-35-41
  40. 40. Привольнев В.В., Забросаев В.С., Даниленков Н.В. // Вестн. Смоленской гос. мед. академии. 2015. T. 14. № 3. C. 85.
  41. 41. Зайцева Н.В., Землянова М.А., Степанков М.С., Игнатова А.М. // Экология человека. 2018. № 5. С. 9.
  42. 42. Thomas J., Periakaruppan P., Thomas V. et al. // RSC Adv. 2018. V. 8. P. 41288. https://doi.org/10.1039/C8RA08893D
  43. 43. Zhang Y., Liu J., Kang Y.S. et al. // Nanoscale. 2022. V. 14. P. 11909. https://doi.org/10.1039/D2NR02665A
  44. 44. Роженцев Д.А., Мансуров Р.Р., Ткачев Н.К. и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2021. Т. 13. С. 919. https://doi.org/10.26456/pcascnn/2021.13.919
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library