Кристаллы Cs2MoO4, Li1.9Cs0.1MoO4 были выращены низкоградиентным методом Чохральского из расплавов. Методом калориметрии растворения измерена стандартная энтальпия образования молибдата цезия (Cs2MoO4). Методом дифференциальной сканирующей калориметрии в интервале температур 320–710 K измерена теплоемкость Li1.9Cs0.1MoO4. С использованием цикла Борна–Габера рассчитана энтальпия решетки Cs2MoO4. Показано, что молибдат цезия является термодинамически устойчивым по отношению к распаду на простые оксиды (Cs2O, MoO3), что делает его перспективным для использования. Установлено, что соединение Li1.9Cs0.1MoO4 не имеет фазовых переходов в интервале температур 320–710 K.
Методом твердофазного синтеза получены керамические образцы Bi1.4Dy0.6O3 и Bi3Nb0.2Sm0.8O6.2. Показано, что соединения имеют кубическую структуру (пр. гр. Fm3m). Методом растворной калориметрии определены стандартные энтальпии образования, рассчитаны энтальпии решетки. Энтальпия решетки соединений Bi3Nb0.2R0.8O6.2 уменьшается по абсолютной величине при замене эрбия на самарий, что связано с увеличением радиуса редкоземельного элемента от эрбия к самарию. Установлено, что энтальпия решетки Bi1.4Dy0.6O3 больше по абсолютной величине, чем энтальпия решетки Bi1.2Gd0.8O3.
Представлены методы синтеза, термодинамические и функциональные свойства соединений на основе ниобатов висмута, замещенных редкоземельными элементами. Данные соединения являются перспективными материалами для топливных элементов, керамических кислородных генераторов, электрокатализа и др. Как показал обзор, большинство соединений имеют кубическую структуру δ-формы оксида висмута, которая обладает самой высокой ионной проводимостью среди твердотельных ионных проводников. Соединения обладают высокой энтальпией решетки и поэтому являются перспективными высокоэнергетическими соединениями. В обзоре рассмотрены работы по базовым термодинамическим характеристикам ниобатов висмута, замещенных редкоземельными элементами. Проанализировано изменение стандартных энтальпий образования, энтальпий решеток, теплоемкости при замене одного редкоземельного элемента другим. Показано, что с уменьшением радиуса РЗЭ стандартные энтальпии образования и энтальпии решеток увеличиваются. Изучено изменение ионной проводимости при изменении температуры и содержания редкоземельного элемента. Показано, что с увеличением температуры и содержания РЗЭ проводимость увеличивается.
Методом твердофазных реакций получен оксид висмута-кобальта-диспрозия состава Bi12.5Dy1.5CoO22.325. Показано, что соединение имеет кубическую структуру, пр. гр. Fmm, параметр решетки a = 0.55279(5) нм. Энтальпия растворения и стандартная энтальпия образования для соединения Bi12.5Dy1.5CoO22.325 измерены методом калориметрии растворения и составили: ΔsolH0 = −1017.0 ± 7.5 кДж/моль, ΔfH0 = = −5338.8 ± 19.9 кДж/моль соответственно. С использованием цикла Борна–Габера рассчитана энтальпия решетки: ΔlatH0 = −99020 кДж/моль. Показано, что энтальпия решетки увеличивается по абсолютной величине с уменьшением радиуса редкоземельного элемента в ряду неодим–диспрозий–гольмий.
Физико-химическими методами изучены окисленные углеродные материалы, полученные в процессе окисления мезопористого углеродного материала марки “Техносорб” 2-30%-ными растворами пероксида водорода. Методами ИК-спектроскопии, титриметрии и химического анализа показано, что при окислении углеродного материала на поверхности частиц образуются кислородсодержащие группы: sp2-COOH, sp3-C—OH, sp2>C—OH, sp2>С=О и др. Надифрактограммахокис-ленных углеродных материалов наблюдаются слабые широкие рефлексы, типичные для гидратированного оксида графита, с незначительным увеличением межплоскостного расстояния d002 . При окислении углеродного материала происходит также возрастание удельной поверхности и объема свободных пор без существенного разрушения наноблоков углеродного материала.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации