В последние годы с ростом популярности электромобилей и других устройств, работающих на батареях, наблюдается значительный рост спроса на литий-ионные аккумуляторы (ЛИА). Эти аккумуляторы стали основным источником энергии для большинства портативных устройств, а также для электрических автомобилей. Одним из таких автомобилей является Nissan Leaf. Однако с увеличением производства и потребления ЛИА возникает не только вопрос обеспечения их эффективного производства, но и необходимость в их экологически безопасной переработке. Процесс переработки отработанных ЛИА включает в себя извлечение ценных компонентов, таких как литий, кобальт, никель и марганец. Эффективная переработка катодных материалов становится особенно важной, так как это позволяет не только повторно использовать эти металлы в производстве новых аккумуляторов, но и снижает потребность в добыче необходимых ресурсов. Одним из элементов, который может быть выделен в процессе переработки ЛИА, является марганец (Mn). Этот металл не только играет важную роль в производстве аккумуляторов, но и может стать основой для синтеза новых материалов, таких как MAX-фаза Mn3AlC. Марганцевые MAX-фазы представляют собой класс двумерных материалов, которые привлекают все большее внимание исследователей благодаря своим уникальным свойствам. Таким образом, переработка литий-ионных аккумуляторов не только решает проблему утилизации отходов, но и создает возможности для разработки новых материалов.
Получен дисперсный биокомпозитный материал Ca3La6(SiO4)6 путем обработки кальций-силикатного золя с добавкой 0.1, 0.3 и 0.7 моль La3+ в гидротермальных условиях. Методами РФА, РЭМ, ЭДС изучены состав, морфология и структура биокомпозита, определены продукты реакции (CaSiO3, CaLa4(SiO4)3O, Ca3La6(SiO4)6) в зависимости от концентрации La3+. Изучены структурные характеристики порошков биокомпозита с различным содержанием La3+ методами БЭТ и DFT. Исследованы их сорбционные характеристики по отношению к 5-фторурацилу в зависимости от pH среды. Установлено, что максимальной сорбционной емкостью (0.768 мг/г при рН 3) обладает образец биокомпозита Ca3La6(SiO4)6 с добавкой 0.3 моль La3+. Дополнительно оценены биосовместимые свойства образцов биокомпозита в условиях их контакта с искусственной плазмой крови путем установления ключевых изменений в их составе, морфологии и структуре при образовании биоактивной фазы апатита на доступной поверхности образцов. Результаты перспективны для дальнейших исследований в области разработки новых сорбционных материалов, включая биоматериалы для адресной доставки лекарств, с потенциалом практического применения.
Применение керамики в качестве матриц для иммобилизации радионуклидов с целью безопасного долговременного их захоронения или полезного использования изучается с акцентом на фазовую устойчивость, структурную целостность, гидролитическую стойкость и др. В настоящей работе исследован комбинированный подход, основанный на цитратном золь-гель синтезе наноразмерного порошка La2Ti2O7 и его последующем искровом плазменном спекании с получением плотной керамики. Методами РФА и РЭМ изучен фазовый состав и структура наноразмерного порошка La2Ti2O7 иобразцов керамики на его основе, полученных в интервале температур 900–1300°С. Показано, что условия синтеза порошка обеспечивают формирование наноразмерного зерна кристаллического La2Ti2O7, консолидация которого в условиях искрового плазменного разогрева протекает с изменением фазового состава от монофазы La2Ti2O7 моноклинной структуры до орторомбической с примесью LaTiO3 при температуре ˃1200°С. Выявлено, что изменение структуры керамики сопровождается формированием непористых и бездефектных монолитных образцов. Установлено, что подобное изменение приводит к повышению относительной плотности (81.3–95.7%) и прочности при сжатии (78–566 МПа) образцов керамики. Однако происходит снижение гидролитической стойкости керамики, на что указывает увеличение скорости выщелачивания La3+ от 10–7 до 10–5 г/(см2 сут). Полученные данные полезны для системного исследования материалов, пригодных для технологий иммобилизации радиоактивных отходов в керамику.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации