Комбинированным методом получен никелат лития LiNiO2 c близким к стехиометрическому составом и изучены его характеристики. Установлено, что LiNiO2 обладает высокими электрохимическими свойствами, включая теоретическую емкость 250–270 мА/г, что делает его перспективным катодным материалом для литий-ионных аккумуляторов, альтернативным LiCoO2. Однако коммерческое использование LiNiO₂ ограничивается сложностями в достижении стехиометрического состава и высокой стоимостью традиционных методов синтеза. С помощью рентгенофазового анализа и спектрометрии идентифицированы образующиеся фазы и определен их химический состав. Для исследования структуры и морфологии использованы методы электронной микроскопии и Брунауэра–Эммета–Теллера. По разработанной технологической схеме получен никелат лития состава Li(0.98)Ni(1.02)O2, обеспечивающего формирование наноразмерных образцов с высокой удельной поверхностью и улучшенными электрохимическими характеристиками. Результаты подчеркивают потенциал LiNiO2 как конкурентоспособного катодного материала для литий-ионных аккумуляторов.
Рассмотрен синтез и электрофизические свойства феррита шпинели ZnFe2O4, полученного методом твердофазного взаимодействия с использованием механоактивации. Исследование включает комплексный анализ фазового состава и кристаллической структуры с помощью рентгенофазового, термогравиметрического и дифференциально-термического анализов, что позволяет выявить термические эффекты и этапы синтеза. Импедансная спектроскопия используется для изучения электрофизических свойств, подтверждая значительное влияние температуры обжига на электрическую проводимость. Результаты показывают, что при повышении температуры обжига до 1000°C электропроводность материала увеличивается на порядок. Это открывает перспективы использования ZnFe2O4 в качестве катодного материала для литий-ионных и металл-ионных аккумуляторов. Данная работа подчеркивает важность оптимизации условий синтеза для достижения высоких характеристик электродных материалов.
Комбинированным методом получены катодные материалы на основе твердых растворов состава Li2CoMn3O8 и изучены их характеристики. Установлено, что Li2CoMn3O8 обладает высокими электрохимическими свойствами, что делает его перспективным катодным материалом для литий-ионных аккумуляторов, альтернативным LiCoO2. С помощью рентгенофазового анализа и спектрометрии идентифицированы образующиеся фазы и определен их химический состав. Для исследования структуры и морфологии использованы методы электронной микроскопии и Брунауэра–Эммета–Теллера. Предложена технологическая схема получения Li2CoMn3O8, которая обеспечивает формирование наноразмерных образцов с высокой удельной поверхностью и улучшенными электрохимическими характеристиками. Исследованы электрохимические свойства синтезированных образцов.
Изучено влияние длительности гидротермального синтеза на сорбционные свойства титаносиликатов фармакосидеритового типа (ТСФТ) по отношению к цезию-137 и стронцию-90, структурно-фазовый состав, морфологию поверхности и текстурные характеристики. Состав, морфология и структура синтезированных титаносиликатов исследованы методами РФА, РЭМ и ЭДС. Текстурные характеристики материалов изучены с помощью методов БЭТ и DFT. Для дизамещенных ТСФТ исследованы сорбционные свойства по отношению к радионуклидам цезия и стронция в микроконцентрациях в условиях адсорбции из модельных растворов жидких радиоактивных отходов низкой и средней концентрации мешающих примесей.
Представлен синтез слоистого сложного карбида состава (Cr,V)C с применением реакционного искрового плазменного спекания (ИПС) и гидротермального кислотного травления. Методами РЭМ и ПЭМ проведено детальное исследование макро- и наноструктуры на каждом этапе синтеза. Подтверждено наличие характерных особенностей образования двумерного карбида в виде частиц и фрагментов мультислойной структуры на макро- и наноуровне. С применением ЭДС и РФА исследован элементный и фазовый состав образцов, в результате установлено, что исходная ожидаемая MAX-фаза Cr2VAlC2 в составе образца, полученного ИПС, отсутствует. При этом обнаружена фаза смешанного биметаллического карбида (Cr,V)C на всех стадиях синтеза, для которого параметры кристаллической решетки, включая объем элементарной ячейки, значительно изменяются после кислотного травления. Очевидные изменения в объемной и кристаллической структуре (Cr,V)C соответствуют образованию двумерных наночастиц в составе синтезированного материала. Исследование магнитных характеристик показало, что все образцы обладают магнитным гистерезисом с относительно низкими показателями коэрцитивной силы и величины соотношения остаточной намагниченности к намагниченности насыщения. Низкотемпературные измерения показали незначительное увеличение магнитного момента при понижении температуры для образца, полученного в условиях реакционного ИПС до кислотного травления в HF, без существенного изменения в магнитном поведении образцов.
В последние годы с ростом популярности электромобилей и других устройств, работающих на батареях, наблюдается значительный рост спроса на литий-ионные аккумуляторы (ЛИА). Эти аккумуляторы стали основным источником энергии для большинства портативных устройств, а также для электрических автомобилей. Одним из таких автомобилей является Nissan Leaf. Однако с увеличением производства и потребления ЛИА возникает не только вопрос обеспечения их эффективного производства, но и необходимость в их экологически безопасной переработке. Процесс переработки отработанных ЛИА включает в себя извлечение ценных компонентов, таких как литий, кобальт, никель и марганец. Эффективная переработка катодных материалов становится особенно важной, так как это позволяет не только повторно использовать эти металлы в производстве новых аккумуляторов, но и снижает потребность в добыче необходимых ресурсов. Одним из элементов, который может быть выделен в процессе переработки ЛИА, является марганец (Mn). Этот металл не только играет важную роль в производстве аккумуляторов, но и может стать основой для синтеза новых материалов, таких как MAX-фаза Mn3AlC. Марганцевые MAX-фазы представляют собой класс двумерных материалов, которые привлекают все большее внимание исследователей благодаря своим уникальным свойствам. Таким образом, переработка литий-ионных аккумуляторов не только решает проблему утилизации отходов, но и создает возможности для разработки новых материалов.
В настоящее время наблюдается интенсивный рост использования полимерных композиционных материалов во всех сферах промышленности, который обусловлен их уникальными свойствами: высокой прочностью, легкостью, устойчивостью к коррозии. В связи с развитием новых технологий возникает необходимость создания нового класса экологически безопасных материалов, обеспечивающих эффективное и экономически выгодное использование сырья. В работе рассматриваются синтетические наноструктурированные алюмосиликаты с заданным отношением Si/Al = 1, 3, 5 в качестве модификаторов политетрафторэтилена. Исследован фазовый элементный состав и термическое поведение синтезированных соединений. Установлено, что использование алюмосиликатов способствует увеличению прочности при растяжении на 40% и относительного удлинения при разрыве на 70% по сравнению с исходной полимерной матрицей. Введение алюмосиликата сопровождается увеличением износостойкости в 521 раз. Таким образом, синтезирован новый класс модификаторов для полимерных композиционных материалов.
Разработан способ модификации поверхности магнитных композитных материалов на слоистых двойных гидроксидах (СДГ) Fe3O4/Zn-Al-СДГ для увеличения гидрофобности. Исследованы механизмы взаимодействия стеарата, олеата и додецилсульфата натрия с поверхностью Fe3O4/Zn-Al-СДГ. Изучено влияние гидрофобизации в среде этанола на пористую и кристаллическую структуры исходного материала. Показаны способы синтеза магнитных гранулированных и губчатых сорбентов с использованием меланин-формальдегидной смолы в качестве основы. Полученные в оптимальных условиях образцы гранулированных и губчатых сорбционных материалов Fe3O4/СДГ-CТ и МЕЛ-Fe3O4/СДГ-CТ обладают высокой сорбционной емкостью по отношению к нефти (0.60 и 21.36 г/г соответственно), магнитной восприимчивостью, гидрофобностью и возможностью регенерации. Синтезированные материалы перспективны для удаления нефтяных разливов с поверхности морских акваторий и экологического мониторинга.
Представлено исследование по получению карбидокремниевой керамики, в том числе в составе с армирующей добавкой 10 мас. % SiCw-вискеров, и металл-керамических композитов с неразъемным соединением на основе данной керамики и жаропрочного сплава ЖС6У-ВИ с применением технологии искрового плазменного спекания. Изучены динамика консолидации SiC-порошков в условиях ИПС, фазовый состав, структура, плотность и микротвердость формируемых образцов SiC-керамики и ее армированной формы SiC/SiCw. Реализован способ получения металл-керамических композитов с неразъемным соединением на основе полученных образцов керамики и жаропрочного сплава ЖС6У-ВИ в условиях ИПС. Методами РЭМ и ЭДС показано, что получение композитов с бездефектными границами соединенных слоев керамики и жаропрочного сплава достигается за счет формирования промежуточных слоев связующих компонентов Ti-Ag и Ni-Ag, а также демпферного слоя Mo для компенсации различия в величинах КТЛР. Структурная целостность композитов исследована с применением электронной микроскопии и рентгеновской микротомографии. Установлено, что структура SiC- керамики без добавки SiCw-вискеров является более структурно гомогенной и менее хрупкой для получения композита SiС–ЖС6У-ВИ с неразъемным соединением по технологии ИПС.
Indexing
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation