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Магнитные наночастицы феррита меди(II) являются перспективным материалом для биомедицины, 
электроники и фотокаталитических приложений. В работе методом анионообменного осаждения с по-
мощью анионита АВ-17-8 в ОН-форме в присутствии декстрана-40 получены однородные сферические 
наночастицы CuFe2O4 размером 18.3 ± 0.4 нм с шириной запрещенной зоны 2.37 эВ. Фотокаталитическая 
активность полученного материала изучена на примере фотодеградации широко распространенного ани-
онного красителя – индигокармина – в присутствии жертвенных агентов: цитрата, карбоната и гидрокар-
боната натрия. Показана эффективность совместного применения доноров электронов – гидрокарбона-
та и цитрата натрия, снижающих вероятность рекомбинации фотогенерированных дырок и электронов. 
Определены кинетические параметры процесса (псевдонулевой порядок, kкаж = 3.6 × 10–7 моль/(л мин),  
T1/2 = 75.8 ± 2.3 мин) и предложен его механизм. Методом ЯМР установлены промежуточные продукты 
фотокаталитического окисления индигокармина.
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ВВЕДЕНИЕ
Фотокаталитические реакции, использу-

ющие для химических превращений энергию 
квантов света, в идеале солнечного, отвечают 
критериям зеленой химии и устойчивого раз-
вития, а также являются высокоэффективными 
и перспективными химическими процессами. 
Они могут быть использованы в препаративных 
целях для осуществления различных органиче-
ских реакций, протекающих с высоким выходом 
и селективностью без применения дополнитель-
ных реагентов и необходимости удаления не-
прореагировавших веществ [1]. Например, авто-
ры [2] сообщают о фотокаталитическом способе 
синтеза производных кубана, а в [3] фотокатализ 
применяют в процессе переработки биомассы в 
экологически чистое топливо. 

В настоящее время наиболее часто фотохими-
ческие реакции используются для очистки воздуха 
и воды от различных загрязнителей. Эти процессы 
безопасны и экологичны, обеспечивают высокую 
степень минерализации загрязняющих веществ, 

а после их применения не остается отходов, тре-
бующих утилизации или захоронения [4]. Однако 
их скорость, как правило, мала, а для осуществле-
ния необходимы фотокатализаторы. Наиболее 
распространенными фотокатализаторами явля-
ются соединения переходных металлов, облада-
ющие полупроводниковыми свойствами, напри-
мер оксиды (ZnO [5], TiO2 [6], SnO2 [7], WO3 [8],  
MoO3 [9]), сульфиды (NiS, CuS, CdS [10–12]),  
селениды (CdSe) [13] и другие соединения  
(Bi2WO6 [14], Na4Co(MoO4)3 [15], g-C3N4 [16]).

В последнее время все чаще предлагаются 
магнитные фотокатализаторы [17], преимуще-
ством которых является простота их отделения 
от реакционной среды по завершении фотока-
талитического процесса, особенно при создании 
проточных фотокаталитических реакторов или 
очистке трудно фильтруемых сред. 

Ферриты цветных металлов являются пер-
спективными фотокатализаторами, так как об-
ладают подходящими для фотокатализа значе-
ниями ширины запрещенной зоны, химической 
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и термической стабильностью, а также значи-
тельной удельной намагниченностью, которая 
может варьироваться с изменением состава и 
условий синтеза материала. В частности, маг-
нитные свойства феррита меди(II), кристал-
лизующегося в двух сосуществующих фазах 
(кубическая и тетрагональная модификации), 
различающихся магнитными свойствами, могут 
быть настроены путем контроля условий его по-
лучения [18–22]. 

Однако при использовании ферритов эффек-
тивность фотокатализа может снижаться вслед-
ствие присущей им быстрой электронно-дыроч-
ной рекомбинации [23, 24]. С целью увеличения 
времени жизни фотогенерированной электрон-
но-дырочной пары – экситона – используют 
композитные материалы, добавляя к ферритам 
наночастицы благородных металлов [25], другие 
полупроводники (например, феррит магния [26] 
или цинка [27], сульфид цинка [28], кремний [29] 
или его оксид [30]), а также проводят катион-
ное легирование [31]. Такой подход позволяет 
ускорить процессы межфазного переноса заря-
да (гетеропереходы) [26] и способствует более 
эффективному разделению фотогенерируемых 
электронов (e–) и дырок (h+) в результате элек-
трохимического взаимодействия между фазами 
нанокомпозита. Однако композиты зачастую 
нестабильны в условиях фотореакции, разру-
шаются и быстро теряют свою каталитическую 
активность.

Другой подход, приводящий к повышению 
эффективности разделения фотогенерирован-
ных зарядов, продемонстрированный в рабо-
тах [32, 33], заключается в использовании доно-
ров электронов – жертвенных агентов. Данные 
соединения (сульфид натрия, аскорбиновая 
кислота, триэтаноламин, метанол и др.) обычно 
добавляют в раствор, где они сорбируются на по-
верхности катализатора и необратимо реагируют 
с фотогенерированными дырками, что приводит 
к окислению жертвенного агента и высвобожде-
нию электронов, участвующих в восстановле-
нии целевого соединения, например водорода 
из воды [34]. Помимо доноров электронов при-
меняют и их акцепторы (Ag+, Fe3+ и др.) [35–37]. 
В этом случае фотогенерированные электроны 
реагируют с жертвой, а дырки окисляют целевое 
соединение.

Следует отметить, что в большинстве работ 
изучены фотокаталитические свойства сульфи-
да и оксида цинка, а также TiO2 в присутствии 
в качестве жертвенного агента сульфида натрия, 
однако фотокаталитические свойства ферритов 

изучены недостаточно, а работы, в которых в ка-
честве жертвенных агентов используют гидро-
карбонат или цитрат натрия, нам неизвестны. 

Поскольку продолжительность жизни экс-
итонов и, следовательно, фотокаталитические 
свойства феррита меди(II), согласно [34], зависят 
от метода и условий его получения, в настоящей 
работе для синтеза CuFe2O4 мы использовали 
разработанный нами новый метод – анионооб-
менное осаждение с использованием анионита в 
ОН-форме [22], позволяющий контролировать 
поверхностный заряд, модификацию и морфо-
логию продукта [38]. 

Цель настоящей работы – синтез наночастиц 
феррита меди(II) и изучение их фотокаталити-
ческой активности на примере фотодеградации 
очень распространенного красителя индигокар-
мина (ИК) в присутствии различных жертвен-
ных агентов: цитрата (Cit3–), карбоната и гидро-
карбоната натрия.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
В работе использовали следующие реактивы: 

декстран-40 (М = 40000 Да, PanReac AppliChem), 
FeCl3 ⋅ 6H2O, CuCl2 ⋅ 2H2O (х. ч., Химреактивснаб), 
индигокармин (C16H8N2Na2O8S2, ч. д. а., ДИА М), 
гидрокарбонат натрия (х. ч., Химреактивснаб), 
карбонат натрия (х. ч., Химреактивснаб), ци-
трат натрия (5,5-водный трехзамещенный, х. ч., 
Химреактивснаб), пероксид водорода (х. ч., Хим-
реактивснаб, свежеприготовленный 1 M рас-
твор), гелевый анионит АВ-17-8 (ГОСТ 20301-74, 
ПАО “АЗОТ”), содержащий в качестве ионоген-
ных групп четвертичные триметиламмониевые 
основания. Анионит был переведен в ОН-фор-
му, для этого исходный сорбент в хлоридной 
форме отмывали от мономеров 1 М раствором 
NaCl (соотношение твердой (т) и жидкой (ж) фаз 
т : ж = 1 : 3), обрабатывали 5–6 раз 2 М раство-
ром NаОН (т : ж = 1 : 3) по 1 ч, промывали водой 
до рН 6–7 и высушивали при температуре 60°С. 
Полная обменная емкость анионита в OH-фор-
ме, определенная по 0.1 М раствору HCl, соста-
вила 1.5 ммоль-экв/г.

Синтез наночастиц СuFe2O4. Навески исходных 
солей (0.68 г СuCl2 · 2H2O и 2.16 г FeCl3 · 6H2O) 
растворяли в 50 мл 10%-ного раствора декстра-
на-40 и добавляли предварительно набухший в 
воде анионит (1.5-молярный избыток). Синтез 
проводили при температуре 60°С и перемеши-
вании в течение 1 ч со скоростью 180 об/мин.  
Для отделения анионита смесь пропускали через 
сито с диаметром отверстий 0.16 мм и промыва-
ли дистиллированной водой. Осадок отделяли 
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центрифугированием, высушивали при 80°С и 
подвергали отжигу при 850°С в течение 1 ч [22].

Выход продукта определяли как отношение 
общего количества молей меди и железа в про-
дукте к общему количеству молей меди и железа 
в исходном растворе. Содержание меди и желе-
за определяли методом атомно-абсорбционной 
спектроскопии на спектрометре AAnalyst 400 
(Perkin Elmer, США).

Исследование полученных наночастиц. Фазо-
вый состав образцов устанавливали на дифракто-
метре Shimadzu XDR-600 (Shimadzu Corporation, 
Япония) в СuKα-излучении, идентификацию 
фаз осуществляли с помощью картотеки базы 
данных PDF2. Уточнение параметров ячейки 
проводили в ПО Topas3 методом Ритвельда. Ми-
крофотографии (ПЭМ) получали с помощью 
просвечивающего электронного микроскопа 
Hitachi 7700М (Hitachi Corporation, Япония) 
при ускоряющем напряжении 100 кВ. Для по-
строения диаграммы распределения частиц по 
размерам было подвергнуто статистической об-
работке 1500 частиц. Для изучения оптических 
и электронных свойств CuFe2O4 использовали 
гидрозоль, полученный при диспергировании 
20 мг наночастиц ультразвуковым аппаратом 
“Волна” (модель УЗТА-0.2/22-ОМ, Центр ульт-
развуковых технологий, Бийск, Россия) в 50 мл 
дистилированной воды. Оптические спектры 
поглощения гидрозоля CuFe2O4 регистрировали 
в диапазоне от 200 до 700 нм на спектрофото-
метре GENESYS 10S (Thermo Scientific, США). 
Для определения ширины запрещенной зоны 
(Eg) полученные спектры поглощения в области 
200–700 нм обрабатывали в координатах Тауца 
для прямых (зависимость (αhν)2 = f(hν)) и непря-
мых ((αhν)1/2 = f(hν)) оптических переходов.

Исследование фотокаталитической актив-
ности частиц CuFe2O4 проводили с помощью 
реакции фотодеградации индигокармина 
(5.5 × 10–5 моль/л), осуществляемой в условиях, 
указанных в табл. 1.

С целью установления сорбционного равно-
весия и исключения влияния процессов сорбции 
красителя на поверхности наночастиц на резуль-
таты измерений кварцевый стакан накрывали 
непрозрачным колпаком и в темноте раствор пе-
ремешивали в течение 60 мин на магнитной ме-
шалке со скоростью 500 об/мин. Затем проводи-
ли облучение ультрафиолетом (лампа UVA-340, 
мощность 26 Вт, основной максимум 340 нм [39]) 
в течение 100 мин. Отобранные через каждые 
10 мин пробы (1 мл) после отделения катализато-
ра магнитной сепарацией помещали в кварцевые 
кюветы (длина оптического пути 1 см) и записы-
вали их электронный спектр поглощения на при-
боре GENESYS 10S (Thermo Scientific, США). 

Спектры ЯМР исходного индигокармина 
и продуктов фотокаталитической реакции за-
писывали на приборе AVANCE III 400 (Bruker, 
Германия) в стандартных (5 мм) ампулах ЯМР. 
Для стабилизации сигнала к исследуемым рас-
творам добавляли 15 мкл D2O. Спектры ЯМР 1Н 
записывали с использованием одиночного им-
пульса на рабочей частоте 400 МГц с задержкой 
релаксации 5 мкс. Для подавления сигнала воды 
использовали стандартную импульсную после-
довательность zgpr из библиотеки Bruker. Спек-
тры ЯМР 13С{1H} с развязкой от протонов запи-
сывали на рабочей частоте 150 МГц с задержкой 
релаксации 6.5 мкс и накоплением 512 сканов 
в течение 19 ч. Химические сдвиги представле-
ны относительно сигнала дейтерорастворителя 
(D2O). Все спектры обработаны с использовани-
ем программного пакета Topspin 3.2.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтез наночастиц феррита меди(II) методом 
анионообменного осаждения в присутствии 

декстрана
Процесс анионообменного осаждения меди и 

железа анионитом АВ-17-8 в ОН-форме в при-
сутствии полисахарида декстрана-40 может быть 
описан уравнением:

Таблица 1. Условия экспериментов по исследованию фотокаталитической активности CuFe2O4

№ опыта
Жертвенный агент

pH Масса CuFe2O4, мг
С(Na3cit), моль/л С(NaHCO3), моль/л С(H2O2), моль/л С(Na2CO3), моль/л

1 – 0.095 – – 8.24

20.00

2 0.022 – – – 8.30
3 – – – – 4.52
4 0.022 0.095 – – 8.27
5 0.022 – 0.022 – 8.50
6 0.022 – – 0.095 9.56
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где R–OH и R–Cl – анионообменная смола  
AВ-17-8 в OH- и Cl-форме соответственно. 

Анионообменное осаждение имеет ряд преи-
муществ по сравнению с обычным химическим 
осаждением [38]. Процесс осуществляется в 
стационарных, легко контролируемых условиях 
при низких значениях ионной силы без избытка 
осадителя, что позволяет получать однородный 
монодисперсный продукт с воспроизводимыми 
физико-химическими свойствами. Как пока-
зано нами ранее [22, 40], использование в ходе 
осаждения полисахарида (декстрана 40 кДа) пре-
дотвращает агломерацию и агрегацию образую-
щихся частиц, что способствует формированию 
наноразмерных порошков [40]. Кроме того, при 

использовании декстрана-40 образуется продукт 
с менее выраженными адгезионными свойства-
ми, что снижает количество осадка на зернах 
анионита (молярная доля меди в фазе анионита 
не превышает 2%), максимальный выход про-
дукта осаждения составляет 98%.

В ходе обработки продуктов анионообменно-
го осаждения при 850°С в течение 1 ч получен 
монофазный СuFe2O4, состоящий из однород-
ных частиц размером 18.3 ± 0.4 нм (рис. 1). Для 
CuFe2O4 характерно существование кубической 
и тетрагональной модификаций, причем послед-
няя считается более термодинамически устойчи-
вой при комнатной температуре [41, 42]. Соглас-
но данным РФА (рис. 2), в ходе анионообменного 
осаждения получена смесь кубического  
(c-CuFe2O4, Fd3m 33 ± 2%; a = 8.388 ± 0.001 Å)  
и тетрагонального (t-CuFe2O4, I41/amd 67 ± 2%; 
a = 5.870 ± 0.001 Å, c = 8.556 ± 0.001 Å) феррита 
меди(II). 

(а) (б)

(в)
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Рис. 1. ПЭМ-изображение (а), электронная микродифракция (б) и диаграмма распределения по размерам (в) на-
ночастиц CuFe2O4.
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Изучение оптических и электронных свойств 
гидрозолей наночастиц феррита меди(II)

Полученный оптический спектр поглощения 
гидрозолей наночастиц феррита меди(II) приве-
ден на рис. 3а. Рассчитанные значения ширины 
запрещенной зоны [43, 44] (2.37 эВ для прямого 
перехода, рис. 3б) и (0.76 эВ для непрямого пере-
хода, рис. 3в) хорошо согласуются с литератур-
ными данными [45]. 

В непрямом оптическом переходе в процес-
се поглощения энергии помимо электрона ва-
лентной зоны и кванта света участвует фонон, в 
результате чего его интенсивность значительно 
ниже, чем прямого перехода, поэтому с точки 
зрения фотокатализа такие переходы малопер-
спективны. Полученная энергия прямого опти-
ческого перехода (2.37 эВ, 523 нм) позволяет рас-
сматривать феррит меди(II) как эффективный 
фотокатализатор для создания оптоэлектронных 
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Рис. 2. Рентгенограмма наночастиц CuFe2O4, а также ре-
зультаты уточнения профиля по методу Ритвельда (крас-
ная линия) и разностная кривая (светло-серая линия).
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устройств как в моноварианте, так и в соста-
ве различных гибридных систем, таких как 
CuFe2O4@TiO2 [46] и CuFe2O4/ZnO [47].

Проведение фотокаталитического  
разложения индигокармина

Для изучения фотокаталитической актив-
ности наночастиц CuFe2O4 использовали реак-
цию фотодеградации красителя индигокармина  
(динатриевой соли индиго-5,5'-дисульфокис-
лоты, C16H8N2Na2O8S2), оптический спектр по-
глощения которого в воде приведен на рис. 4. В 
спектре присутствуют характерные для индиго-
кармина максимумы при 610, 287 и 250 нм. Вы-
бор красителя в нашем исследовании обусловлен 
прежде всего его широким применением в про-
мышленности, изученностью ОВР-процессов с 
его участием и их продуктов [48, 49], легкостью 
детектирования обычным спектрофотометром, 
хорошей растворимостью в воде, незначитель-
ным собственным поглощением на длине вол-
ны, соответствующей интересующему нас опти-
ческому переходу в 2.37 эВ (523 нм). 

Помимо этого, в последних исследованиях 
сообщается о возможном токсическом действии 
повышенных доз индигокармина. Так, в 2023 г. 
Европейское управление по безопасности пище-
вых продуктов (EFSA) выпустило обновленное 
научное заключение о токсичности индигокар-
мина [50], в котором предупредило об опасности 
превышения рекомендованного допустимого 
суточного потребления индигокармина (E132) 
5 мг/кг массы тела в день.

С целью установления равновесия сорбция–
десорбция и исключения влияния процессов 
сорбции красителя на поверхности наночастиц 
на результаты измерений раствор красителя с 
наночастицами феррита меди(II) в присутствии 
цитрата и/или гидрокарбоната натрия пред-
варительно выдерживали в темноте в течение 
60 мин  – так называемая темновая фаза. На 
рис. 5 приведены оптические спектры поглоще-
ния, измеренные в ходе темновой фазы через 10 
и 60 мин от начала опыта для различных соста-
вов исходного раствора (табл. 1), свидетельству-
ющие об отсутствии заметной сорбции красите-
ля твердой фазой. 

На спектре раствора в опыте 1 (ИК  + 
+  NaHCO3  +  CuFe2O4) наблюдается небольшое 
плечо поглощения с максимумом около 720 нм, 
что связано, по всей видимости, с образовани-
ем комплекса индигокармина с ионами Cu2+ в 
результате частичного выщелачивания ионов 

меди из феррита [50, 51]. Однако в отсутствие 
гидрокарбоната натрия, а также при добавлении 
раствора цитрата натрия комплекс ИК с Cu2+ не 
наблюдался (рис. 5б–5г). Мы предполагаем, что 
цитрат-ион, эффективно связывающийся с по-
верхностью наночастиц феррита меди(II) за счет 
образования устойчивых в широком диапазоне 
pH поверхностных комплексов с железом, пре-
пятствует выщелачиванию Сu2+  [52–55]. Отсут-
ствие максимума при 720 нм при использовании 
воды вместо раствора гидрокарбоната натрия 
можно объяснить недостаточной устойчиво-
стью указанных комплексов в слабокислой среде 
(рН раствора индигокармина 4.52).

На рис. 6 приведены изменения оптических 
спектров поглощения индигокармина под дей-
ствием ультрафиолетового излучения в присут-
ствии гидрокарбоната или цитрата натрия, а 
также их смеси. Процесс фотодеградации кра-
сителя сильно зависит от состава используемого 
раствора. Видимые изменения в спектре наблю-
дались только в опытах 1 и 4, т.е. в присутствии 
гидрокарбоната натрия. Наиболее эффективно 
фотодеградация ИК (на 46% за 60 мин) протека-
ет при совместном присутствии гидрокарбоната 
и цитрата натрия, т.е. в условиях опыта 4. Эти 
условия и были выбраны для дальнейшего ис-
следования влияния количества катализатора на 
скорость реакции разложения индигокармина 
(рис. 7). Видно, что масса феррита меди(II) в ин-
тервале 10–100 мг практически не влияет на ско-
рость процесса. Линейное снижение концентра-
ции индигокармина со временем указывает на 
псевдонулевой порядок реакции (kкаж = 3.6 × 10–7 
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(моль/(л мин)), T1/2 = 75.8 ± 2.3 мин), что харак-
терно для фотохимических реакций [23, 56]. Со-
гласно расчетным данным, для достижения 90% 
минерализации красителя достаточно 120 мин, 
что хорошо согласуется с экспериментальными 
результатами. После проведения фотокатали-
тической реакции катализатор не разрушается, 
что подтверждают результаты рентгенофазового 
анализа (рис. 8). 

Обсуждение механизма фотокаталитического 
разложения индигокармина

На основании результатов работы [56] можно 
записать следующие уравнения, описывающие 
механизм фотокаталического действия наноча-
стиц феррита меди(II): 

	 СuFe O2 4 cb vb� � �h e h�� – ,	 (1)
	 hvb

+ + ( ) ( )HO H O HO +H ,–
2

+→ i 	 (2)

	 ecb
–

2 2
–+ O O HO ,→ i i2( ) 	 (3)

	 2HO H O + O ,2 2 22 i→ 	 (4)
	 HO + H O O + H O + HO,2 2 2 22 i → 	 (5)
	 H O +  HO + HO ,2 2 cb

– –e → i 	 (6)
	 2HO  H O ,2 2i→ 	 (7) 

	
ИК O OH H O

Промежуточные продукты CO + H O
vb 2

	
2 2

2 2

+ →
→ →

+h i

.
	 (8) 

Фотон с энергией, равной или превышающей 
ширину запрещенной зоны феррита меди(II), 
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Рис. 5. Изменения оптических спектров поглощения индигокармина в темновой фазе для следующих систем:  
а – индигокармин + NaHCO3 + CuFe2O4 (опыт 1); б – индигокармин + Na3Cit + CuFe2O4 (опыт 2); в – индигокармин + 
+ СuFe2O4 (опыт 3); г – индигокармин + NaHCO3 + Na3Cit + CuFe2O4 (опыт 4).
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поглощается полупроводником, электрон воз-
буждается и переходит из валентной в зону про- 
водимости ecb   

–, образуя в валентной зоне поло- 
жительную дырку hvb   

+. Возбужденный электрон 
и дырка могут рекомбинировать, выделяя энер-
гию, полученную при возбуждении электрона, 
что снижает эффективность фотокатализатора. 
Однако образовавшиеся дырки могут прореаги-
ровать с адсорбированной на феррите водой, об-
разуя гидроксильные радикалы (реакция (2)), а 
фотогенерированные электроны могут вступить 
во взаимодействие с растворенным кислородом 
с образованием радикалов O2   

–• и HO2• (реак- 
ция (3)). Образовавшиеся активные частицы 
способны жить в растворе достаточное время, 
чтобы вступить в реакцию с индигокармином 

напрямую или через образование пероксида во-
дорода (реакции (4)–(8)). К сожалению, вероят-
ность протекания процессов (2)–(8) недостаточ-
но высока.

В присутствии жертвенных агентов эффек-
тивность фотохимических процессов возрастает, 
что связывают с образованием довольно устой-
чивых в водных растворах радикалов [32–34, 57]: 

	 RCO + R +CO ,2
– +

2h → i 	 (9)

	 RCO H + OH R  + CO + H O,2 2 2i i→ 	 (10)

	 Cit + OH Cit  + OH ,3– + 2– –h i i→ 	 (11)

	 CO + HO CO  + OH ,3
2–

3
– –i i→ 	 (12)
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Рис. 6. Изменения оптических спектров поглощения в ходе фотокаталитической реакции для следующих систем: a –  
индигокармин + NaHCO3 + CuFe2O4 (опыт 1); б – индигокармин + Na3Cit + CuFe2O4 (опыт 2); в – индигокармин + 
+ СuFe2O4 (опыт 3); г – индигокармин + NaHCO3 + CuFe2O4 + Na3Cit (опыт 4).
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	 HCO + HO CO + H O.3
–

3
–

2i i→ 	 (13)

Образовавшиеся радикалы обладают высо- 
кими окислительными свойствами (E0(CO3   

–•) = 
= 1.78 В при pH 7 [57]) и способны эффективно 
окислять индигокармин:

	
ИК + Cit CO

Промежуточные продукты CO + H O

2–
3
–

2 2

i i→
→→ .

  (14)

Для подтверждения влияния радикалов (HO•, 
Сit2–•, CO3   

–•) на протекание фотодеградации 

индигокармина нами были проведены дополни-
тельные эксперименты с использованием H2O2, 
цитрата и карбоната натрия (опыты 5, 6, табл. 
1; рис. 9). В присутствии H2O2 и цитрата натрия 
наблюдается значительное снижение концен-
трации красителя (на 80%) уже за 10 мин облу-
чения, что подтверждает важную роль радикалов 
ОН• в этом процессе [58, 59]. Использование 
карбоната натрия менее эффективно, чем ги-
дрокарбоната. Возможно, это связано с более 
щелочной средой (9.56), снижающей скорость 
процесса окисления ИК. Полученные нами дан-
ные указывают на то, что гидроксил-, цитрат- и 
карбонат-радикалы, образующиеся в растворе 
под действием фотогенерированных на поверх-
ности феррита меди(II) дырок, оказывают зна-
чительное влияние на реакцию фотодеградации 
индигокармина [60–62]. 

Изучение продуктов фотокаталитического 
разложения индигокармина

С целью определения промежуточных про-
дуктов фотодеградации индигокармина про-
вели ЯМР-исследование раствора до и после 
осуществления фотокаталитического процесса. 
В спектре ЯМР 1Н индигокармина (рис. 10а) на-
блюдаются три сигнала в области слабого поля 
при 7.92, 7.64 и 6.77 м.д., относящиеся к прото-
нам ароматических колец, и уширенный сигнал 
при 9.97 м.д., соответствующий аминогруппе. В 
спектре ЯМР 13С (рис. 10б) присутствуют 8 сиг-
налов, 6 из которых соответствуют ядрам угле-
рода ароматических колец (118.54, 121.73, 135.40, 
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Рис. 8. Рентгенограмма фотокатализатора (наноча-
стиц CuFe2O4) после проведения фотокаталитиче-
кой реакции, а также результаты уточнения профиля 
по методу Ритвельда (красная линия) и разностная 
кривая (светло-серая линия).
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133.79, 113.14, 153.41 м.д.). Сильно дезэкраниро-
ванный сигнал при 188.80 м.д. относится к кето-
группе С=О, а при 122.59 м.д. – к связи С=С.

В спектре ЯМР раствора после проведения 
фотокаталитической реакции в условиях опы-
та 4 (табл. 1) представлены группы сигналов, 
относящиеся как к исходным веществам (ин-
дигокармину, цитрату натрия), так и к продук-
там. В спектрах ЯМР 1Н и 13С отчетливо видны 
сигналы цитрат-ионов. Группа сигналов 1Н 7.83 
(дублет), 7.61 (дублет дублетов), 6.85 (дублет), 
8.36 (синглет) относится к исходному инди-
гокармину (рис. 11а). Смещение химических 

сдвигов относительно исходного раствора свя-
зано с изменением магнитной восприимчи-
вости среды при добавлении цитрата натрия. 
Вторая группа сигналов при 8.00 (дублет), 7.50 
(дублет дублетов) и 6.78 (дублет) соответствует 
5-изатинсульфонату натрия [63]. Соотноше-
ние исходного индигокармина и 5-изатинсуль-
фоновой кислоты составляет примерно 1 : 1. В 
спектре ЯМР 1Н (рис. 11б) видны также сигналы 
дублетов при 2.57 и 2.43 м.д. с JH–H = 15.2 Гц, на 
которых проявляется “эффект крыши”, что по-
зволяет характеризовать эти сигналы как сильно 
связанную спиновую систему АВ, относящуюся 
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к метиленовой группе СН2 цитрата. Кроме того, 
в спектре ЯМР 1Н проявляются сигналы СН2 
ацетондикарбоновой кислоты, но ввиду ее не-
большого количества в системе в спектре видно 
только по одной компоненте мультиплетов при 
3.36 и 3.43 м.д. Спектр ЯМР 13С (рис. 11в) содер-
жит сигналы цитрат-ионов (182.06, 179.4, 75.42, 
45.96 м.д.) и продукта их окисления – ацетон-
дикарбоновой кислоты, которой соответствуют 
сигналы при 210.36, 175.0 и 53.0 м.д. 

Таким образом, согласно данным ЯМР, про-
межуточным продуктом фотодеградации ин-
дигокармина является 5-изатинсульфоновая 
кислота, что наблюдалось и в работах [64, 65]. 
В дальнейшем она претерпевает деструкцию до 

изатина [66] и через ряд промежуточных продук-
тов (бензойной, щавелевой, нитробензойной, 
дигидроксифумаровой, яблочной кислот) мине-
рализуется до углекислого газа и воды [67, 68].

Присутствие ацетондикарбоновой кислоты в 
растворе после протекания фотокаталитической 
реакции свидетельствует об окислении цитрат-
ионов в ходе процесса фотогенерированными 
дырками. Не исключено, что этот продукт обра-
зуется из радикала Cit2–• [69]. 

ЗАКЛЮЧЕНИЕ
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присутствии полисахарида декстрана-40 с по-
следующим прокаливанием при 850°С получе-
ны магнитные наночастицы феррита меди(II) 
размером 18.3 ± 0.4 нм. Определенное значе-
ние энергии их оптического перехода (2.37 эВ, 
523 нм) (прямой переход) свидетельствует о воз-
можности фотокаталитического применения 
полученных частиц. 

Показано, что эффективность процесса фо-
токаталитической деградации красителя инди-
гокармина на феррите меди(II) сильно зависит 
от состава используемого раствора. Наиболее 
эффективно (на 46% за 60 мин) он протекает в 
присутствии жертвенных агентов – гидрокар-
боната и цитрата натрия, снижающих веро-
ятность рекомбинации фотогенерированных 
дырок и электронов. Установлено, что масса 
феррита меди(II) в интервале 10–100 мг практи-
чески не влияет на скорость процесса, а линей-
ное снижение концентрации индигокармина 
со временем указывает на псевдонулевой по-
рядок реакции (kкаж = 3.6 × 10–7 (моль/(л мин)), 
T1/2 = 75.8 ± 2.3 мин), что характерно для фото-
химических реакций. 

Предложен механизм процесса фотокатализа 
с использованием феррита меди(II) в присут-
ствии жертвенных агентов – цитрата, карбоната 
и гидрокарбоната натрия. Показано преоблада-
ющее влияние радикалов (HO•, Сit2–•, CO3   

–•), 
образовавшихся в результате взаимодействия 
фотогенерированных дырок с жертвенными 
агентами, на окисление индигокармина по срав-
нению с его прямым взаимодействием с h+, что 
связано с малым временем жизни и быстрой ре-
комбинацией фотогенерированных зарядов. 

Методом ЯМР показано образование 5-иза-
тинсульфоната натрия в качестве промежуточ-
ного продукта окисления индигокармина. 
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COPPER FERRITE NANOPARTICLES: SYNTHESIS AND STUDY  
OF THEIR PHOTOCATALYTIC ACTIVITY

A. Y. Pavlikova, *,  S. V. Saikovaa, b,  D. V. Karpova, b,  T. Y. Ivanenkob,  D. I. Nemkovaa 
aSiberian Federal University, Krasnoyarsk, 660041 Russia

bInstitute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, 
Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036 Russia

*e-mail: apavlikov98@mail.ru

Magnetic copper ferrite (II) nanoparticles are promising materials for biomedical, electronic and photocatalytic 
applications. In this work, homogeneous spherical CuFe2O4 nanoparticles with a size of 18.3 ± 0.4 nm and a 
band gap width of 2.37 eV were obtained by anion-exchange resin precipitation using AV-17-8 in OH form in 
the presence of dextran-40. The photocatalytic activity of the obtained material was studied on the example of 
photodegradation of a widely used anionic dye – indigo carmine in the presence of sacrificial reagents: sodium 
citrate, carbonate and hydrocarbonate, hydrogen peroxide. The effectiveness of the joint application of electron 
donors - sodium hydrocarbonate and citrate – in reducing the probability of recombination of photogenerated 
holes and electrons has been demonstrated. The kinetic parameters of the process were determined (pseudo-zero 
order, kapp. = 3.6 × 10–7 mol/(l × min), T1/2 = 75.8 ± 2.3 min) and its mechanism was elucidated. The intermedi-
ates of the photocatalytic oxidation of indigocarmine were determined by NMR.

Keywords: copper ferrite (II); photocatalysis, anion-exchange resin precipitation, magnetic nanoparticles
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