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ВВЕДЕНИЕ
В течение последних шестидесяти лет ак-

тивно проводятся исследования, посвященные 
разработке методов синтеза, изучению и опреде-
лению областей использования аморфных или 
нанокристаллических композитов на основе 
фаз системы Si-O-C (диоксид кремния, карбид 
кремния, оксикарбид кремния). Регулярное по-
явление обзоров с описанием проблем формиро-
вания керамики SiOC, основных методов ее син-
теза, структуры, физико-химических свойств, 
функциональных и эксплуатационных характе-
ристик свидетельствует о непрекращающемся 
интересе исследователей к данной теме [1–3]. 
Благодаря низкой плотности оксикарбида крем-
ния, его термо-, химической и окислительной 
стойкости [4], а также набору функциональных 
свойств, который включает механические [1] и 
электрические характеристики [5], в том числе 
пьезоэлектрический эффект [6], материал пер-
спективен для использования в таких областях, 
как катализ [7], хранение энергии [8–10], авиа-
строение [11], охрана окружающей среды [12], 
биомедицина [13, 14] и т.д.

Под термином “оксикарбид кремния” (SiOC) 
понимают углеродсодержащий SiOx, в котором 
углерод и кислород образуют связи с кремнием, 
формируя смешанные тетраэдры SiO4–xCx (струк-
турные единицы SiO4, SiO3C, SiO2C2, SiOC3 и 
SiC4), в отличие от SiO2, состоящего из тетраэдров 
SiO4. Таким образом, аморфные материалы пере-
менного состава SiOxCy имеют сложную структу-
ру, состоящую из нанодоменов различного соста-
ва и строения [1, 15].

Широко используемым методом формирова-
ния массивной керамики SiOC является пиро-
лиз кремнийорганических полимеров в атмос-
фере инертного газа при высоких температурах. 
Превращение полимерной в неорганическую 
структуру обычно завершается около 1073 K. 
При постепенном нагреве выше 1373 K начина-
ют кристаллизоваться термодинамически ста-
бильные фазы, такие как оксид (SiO2) и карбид 
кремния (β-SiC) [1, 16]. Как правило, при этом 
образуется дополнительная фаза аморфного 
sp2-гибридизованного углерода, диспергирован-
ная в микроструктуру керамики [5, 17, 18]. Ранее 
проведенные исследования показали, что углерод 
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является модификатором для изменения свойств 
композитов SiOC [17]. По данным [5], углеродная 
фаза отвечает за ряд полезных свойств оксикар-
бидов кремния, таких как регулируемый тепловой 
и электрический транспорт, пьезорезистивный 
эффект, поглощение электромагнитных волн, 
обратимое поглощение/высвобождение лития, 
настраиваемая поверхностная энергия, близкая к 
нулю ползучесть при высоких температурах и т.д. 
При этом упорядочение и варьируемое в широ-
ких пределах (0-58 мас. %) содержание углерода 
обеспечивают тонкую регулировку свойств, что 
напрямую влияет на вышеперечисленные функ-
циональные характеристики [5, 7, 19]. 

Следует отметить, что основная часть исследо-
ваний в этой области касается массивных мате-
риалов, в то время как пленкам уделяется гораз-
до меньше внимания. Методы синтеза покрытий 
SiOC подробно описаны в обзоре [20]. Для их 
получения используют различные методики, та-
кие как спрей-пиролиз [21], центрифугирование 
(spin-coating) [22, 23], золь-гель метод [24], магне-
тронное распыление [25] и др. В случае химиче-
ского осаждения из газовой фазы (CVD) удобными 
прекурсорами для получения пленок SiOC явля-
ются летучие кремнийорганические соединения. 
Существует большое число работ по низкотемпе-
ратурному получению полимероподобных пле-
нок гидрогенизированного оксикарбида кремния 
SiOxCy:H [26–29]. Однако известно немного ра-
бот по высокотемпературному синтезу CVD-по-
крытий SiOC. Это отмечают также авторы [15]. 
В табл. 1 на примере работ [15, 30–32] представ-
лены различные подходы к синтезу покрытий на 
основе фаз системы Si-O-C методом CVD. Для 
получения покрытий SiOC используют разные 
способы. В качестве исходных веществ приме-
няют гексаметилдисилоксан (ГМДСО), гекса-
метилдисилазан и тетраэтоксисилан (ТЭОС).  
Использование различных методов осаждения и 
исходных газовых смесей приводит к получению 
пленок различного состава.

В работах [33–35] проведено термодинамиче-
ское моделирование процесса фазообразования 
в системе Si-O-C в области высоких температур. 
Подобное моделирование CVD-процесса позво-
ляет прогнозировать его результаты, поэтому 
его проведение до начала экспериментальных 
исследований является целесообразным. В про-
цессе расчета по входным параметрам (состав 
газовой фазы, температура реактора, общее дав-
ление в системе) определяют количества кон-
денсированных фаз и молекулярных форм га-
зовой фазы, находящихся в термодинамическом 
равновесии. На основании результатов расчета 
строят CVD-диаграмму, отражающую ожидае-
мый фазовый состав полученной пленки в за-
висимости от выбранных параметров процесса. 
Моделирование позволяет также установить 
химические реакции, определяющие положе-
ние пограничных линий на таких диаграммах, 
что дает дополнительные возможности управ-
ления CVD-процессом [36–39]. Примером эф-
фективности такого моделирования могут быть 
работы [40, 41]. В последней из них результаты 
расчета не только полностью соответствуют экс-
периментальным данным по фазовому составу 
полученных пленок, но и позволяют объяснить 
некоторые особенности процесса.

Цель настоящей работы – определение воз-
можности получения покрытий на основе окси-
да, карбида и нитрида кремния из гексаметилди-
силоксана [(CH3)3Si]2O. Для этого исследовано 
влияние содержания кислорода и аммиака в ис-
ходной газовой смеси с данным прекурсором на 
результаты CVD-процесса.

ТЕРМОДИНАМИЧЕСКОЕ 
МОДЕЛИРОВАНИЕ

Методика термодинамического расчета
Использованный в данной работе алгоритм 

расчета состава газовой фазы и находящихся 

Таблица 1. CVD-методы и условия синтеза пленок на основе фаз системы Si-O-C

Метод синтеза Прекурсор Доп. газ Тподложки, K Фазовый состав пленок Литература 

MOCVD ГМДСО C2H5OH + H2 + Ar 1373 а-SiOC + С [15]

HWCVD ТЭОС H2
573,

2073* а-SiOC [30]

LCVD ТЭОС С2Н2 >1774 а-SiC–SiO2 + b-SiC [31]

LCVD ТЭОС С2Н2

1476
1674–1775

>1775

a-SiOC + a-SiO2;
а-SiOC + b-SiC;

а-SiOC + b-SiC + Si
[32]

Примечание. MOCVD – химическое осаждение из газовой фазы при разложении металлоорганических соединений, 
HWCVD – CVD c горячей нитью (* – температура нити), LCVD – лазерное CVD, а – аморфный.
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в равновесии с ней конденсированных фаз ос-
нован на минимизации свободной энергии 
Гиббса рассматриваемой системы и описан в 
работе [42]. В процессе моделирования исполь-
зованы следующие допущения:

1.	 В системе присутствуют конденсирован-
ные фазы постоянного состава и равновесный 
идеальный газ, образованный из молекулярных 
форм.1 

2.	 Состав системы в зоне осаждения опреде-
ляется элементным составом входной газовой 
смеси.

3.	 CVD-процесс протекает в квазиравновес-
ном режиме.

4.	 Подложка в условиях процесса является 
химически инертной как к реагентам, так и к 
продуктам реакции.

В расчетах применяли стандартное про-
граммное обеспечение Банка данных по 
свойствам материалов электронной техники  
(БД СМЭТ, ИНХ СО РАН) [43]. В качестве 
входной термодинамической информации ис-
пользовали содержащиеся в базе данных стан-
дартные термодинамические характеристики 
индивидуальных веществ (DfH0(298 K), S0(298 K),  
C0   

p = f(T)), взятые из работы [44]. Расчеты  
проводили для интервала температур 373–1273 K. 
Исследовали следующие процессы:

1.	 CVD-процесс термического разложения 
[(CH3)3Si]2O (P = 13.33–1333 Па).

2.	 CVD-процесс в системе [(CH3)3Si]2O + nO2 
(P = 13.33 Па, n = 1–5).

3.	 CVD-процесс в системе [(CH3)3Si]2O + 
+ mNH3 (P = 13.33 Па, m = 1–5).

Моделирование двух последних процессов про-
водили при общем давлении в системе 13.33 Па,  

1	 Образование фаз переменного состава не учитывается по 
причине отсутствия необходимой информации об их тер-
модинамических свойствах.

так как в экспериментах по осуществлению 
CVD-процесса обычно используется давление 
в реакторе, близкое к этому значению. Во всех 
случаях предполагалось присутствие в системе 
гелия в качестве газа-носителя. В процессе рас-
чета учитывали возможность образования в си-
стеме молекулярных форм газовой фазы и кон-
денсированных фаз, указанных в табл. 2. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Термическое разложение гексаметилдисилоксана

Равновесный фазовый состав продуктов тер-
мического распада [(CH3)3Si]2O, образование 
которых можно ожидать в диапазоне температур 
Т = 1113–1273 K при общем давлении в реакторе  
P = 13.33–1333 Па, представлен в виде CVD-диа
граммы на рис. 1. Как показали расчеты, при 

Таблица 2. Молекулярные формы газовой фазы и конденсированные фазы, которые содержатся в БД СМЭТ, 
ИНХ СО РАН и учитывались при моделировании*

Молекулярные формы газовой фазы Конденсированные фазы
Si3, Si2, SiO2, SiO, O3, O2, SiH4, SiH3, SiH2, SiH, H2O2, H2O, HO2, HO, H2, 
Si2C, SiC, C3O2, C2O, CO2, CO, SiC4H12, SiC3H10, SiC2H8, SiCH6, H8SiC2, 
H6SiC, H6C2O, H4C2O3, H4C2O3(2), H4C2O2(2), H4C2O(2), H2C2O, H4CO, 
H3CO(2), H2CO2(3), H2CO, HCO2, HCO, C6H6, C3H8, C3H6(2), C3H4, C3H, 
C2H6, C2H5, C2H4, C2H3, C2H2, C2H, CH4, CH3, CH2, CH, C5, C4, C3, C2, 
SiN, NO3, N2O5, N2O4, N2O3, N2O, NO2, NO, N3, N2, H2N2O2, HNO3, HNO2, 
HNO, N3H, N2H4, H2N2, H2N, HN, C2N2, C2N, CN C, He, H, O, Si.

Si, SiO, SiO2(8)**, H2O, SiC(2), 
C(графит), Si3N4

*В скобках указано число учитываемых изомеров молекулярных форм газовой фазы либо состояний конденсированной фазы. 
**Фактически в интервале до 848 K образуется α-кварц, далее до 1185 K – β-кварц, а затем β-кристобалит.

1280

1240

1200

1160

T,
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SiO  + SiC + C2

lgP [Па]

SiC + C

Рис. 1. CVD-диаграмма процесса термического раз-
ложения [(CH3)3Si]2O при изменении общего давле-
ния в реакторе.
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разложении этого соединения могут формиро
ваться фазовые комплексы SiC + C и SiO2 + SiC + C,  
причем образованию первого из них способ-
ствуют понижение давления и повышение тем-
пературы. Реакция, отвечающая за положение 
на рисунке пограничной линии SiO2 + SiC + C |  
| SiC + C, показана в табл. 3.

Процесс CVD в системе [(CH3)3Si]2O + nO2

На рис. 2 представлены области существова-
ния конденсированных фаз, образующихся при 
термическом разложении смесей ГМДСО и кис-
лорода в зависимости от температуры реактора 
и состава исходной газовой смеси. Как видно 
из рисунка, кроме оксида кремния в процессе 
CVD этой системы можно ожидать получения 

четырех фазовых комплексов: SiC + C, SiO2 +  
+ SiC + C, SiO2 + SiC и SiO2 + C. Следует отме-
тить, что при использовании этих смесей можно 
получить комплекс SiO2 + SiC, не содержащий 
графита. Изменение содержания кристалличе-
ских фаз и молекулярных форм газовой фазы 
вдоль изотермы 1223 K, проходящей через эту 
область, показано в табл. 4. Химические реак-
ции, отвечающие за положение пограничных 
линий на рис. 2, приведены в табл. 3.

Процесс CVD в системе [(CH3)3Si]2O + mNH3

Результат CVD-процесса в указанной системе 
в зависимости от температуры реактора и содер-
жания аммиака (m, моль) в исходной газовой сме-
си представлен на рис. 3. Как видно из рисунка, 

Таблица 3. Химические реакции, отвечающие за 
положение пограничных линий на представленных 
рисунках

Пограничная линия Химическая реакция*
SiO2 + SiC + C | SiC + C
SiO2 + SiC + C | SiO2 + SiC
SiO2 + C | SiO2 + SiC + C
SiC + C | SiO2 + SiC 
SiO2 + C | SiO2
Si3N4 + SiO2 + SiC + C | SiO2 + 
+ SiC + C
Si3N4 + SiO2 + C | Si3N4 +SiO2 + 
+ SiC + С
Si3N4 + SiO2 | Si3N4 + SiO2 + C

SiO2 + 3C = SiC + 2CO
SiO2 + 3C = SiC + 2CO
SiO2 + 3C = SiC + 2CO
C + SiC + 2O2 = SiO2 + 2CO
CO2 + C = 2CO
Si3N4 + 3C = 3SiC + 2N2

SiO2 + 3C = SiC + 2CO

CH4 = C + 2H2

* Предполагается, что равновесие смещается в направле-
нии прямой реакции при повышении температуры.
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Рис. 2. CVD-диаграмма процесса в системе 
[(CH3)3Si]2O + nO2 при варьировании содержания 
кислорода в исходной газовой смеси.

Таблица 4. Содержание кристаллических фаз и 
молекулярных форм газовой фазы при 1223 K в 
зависимости от содержания кислорода (n, моль) в 
исходной газовой смеси

n, моль SiO2 SiC C H2 CO H2Oг CO2

0.0 0.00 2.00 3.00 9.00 1.00 0.00 0.00
1.0 0.00 2.00 1.00 9.00 3.00 0.00 0.00
1.5 0.00 2.00 0.00 9.00 4.00 0.00 0.00
2.0 0.33 1.66 0.00 9.00 4.34 0.00 0.00
3.0 1.00 1.00 0.00 9.00 5.00 0.00 0.00
4.0 1.66 0.33 0.00 9.00 5.67 0.00 0.00
4.5 2.00 0.00 0.00 9.00 6.00 0.00 0.00
5.0 2.00 0.00 0.00 8.32 5.68 0.68 0.31
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Рис. 3. CVD-диаграмма процесса в системе  
[(CH3)3Si]2O + mNH3 при варьировании содержания 
аммиака в исходной газовой смеси.
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в CVD-процессе этой системы возможно обра-
зование пяти различных фазовых комплексов: 
SiC + C, SiO2 + SiC + C, Si3N4 + SiO2 + SiC + C, 
 Si3N4 + SiO2 + C, Si3N4 + SiO2. В отличие от пре-
дыдущей системы, область образования фазо-
вого комплекса, не содержащего графит, распо-
ложена при сравнительно низких температурах. 
Реакции, отвечающие положению пограничных 
линий на рис. 3, приведены в табл. 2.

ЗАКЛЮЧЕНИЕ
Выполнено термодинамическое моделирова-

ние процесса осаждения из газовой фазы пленок 
с использованием в качестве прекурсора гексаме-
тилдисилоксана. Смоделированы CVD-процессы 
термического разложения этого соединения, а 
также его смесей с кислородом и аммиаком. 

Показана возможность использования  
ГМДСО, а также указанных выше смесей для 
получения пленок разного состава, содержащих 
оксид, карбид и нитрид кремния. Рассчитаны 
соответствующие CVD-диаграммы. Получен-
ные результаты позволяют определить условия 
формирования пленок, в которых возможно 
образование различных фазовых комплексов, в 
том числе не содержащих графит. 

Если при каких-либо условиях, согласно мо-
делированию, ожидается образование фазового 
комплекса, например SiO2 + SiC, и известно, что 
на его основе возможно образование соедине-
ния переменного состава SiCxOy, то, несмотря 
на отсутствие данных о его термодинамических 
свойствах, в эксперименте не исключено его об-
разование.

Установлены реакции, отвечающие положе-
нию пограничных линий на CVD-диаграммах. 
Важно отметить, что эти реакции могут быть ис-
пользованы для изменения условий, при кото-
рых в системе образуются те или иные фазовые 
комплексы. Таким образом, их использование 
дает дополнительные возможности управления 
CVD-процессом.
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THERMODYNAMIC MODELING OF PHASE FORMATION CONDITIONS 
IN THE Si–O–C–H–He AND Si–O–C–H–N–He SYSTEMS
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Thermodynamic modeling of the film synthesis process from the gas phase in the Si–O–C–H–He and  
Si–O–C–H–N–He systems during the decomposition of hexamethyldisiloxane was performed. The modeling 
used the method for calculating chemical equilibria based on minimizing the Gibbs energy of the system, imple-
mented using the Data Bank on the properties of electronic materials. It was shown that various phase complexes 
containing silicon oxide, carbide, and nitride can be obtained in CVD processes of such systems. The results of 
the thermodynamic modeling can be useful for developing methods for the synthesis of film coatings based on 
such phase complexes.

Keywords: thermodynamic modeling, chemical vapor deposition, thin films, hexamethyldisiloxane, silicon ox-
ide, silicon carbide, silicon nitride
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