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ВВЕДЕНИЕ
Развитие современных технологий преобра-

зования тепловой и солнечной энергии, аккуму-
лирования электрической энергии, захоронения 
ядерных отходов и пр. требуют разработки новых 
материалов, способных противостоять таким 
экстремальным воздействиям, как высокие тем-
пературы, агрессивные среды, ионизирующие 
излучения и внешние поля [1]. Достижения в 
разработке металлических многокомпонентных 
сплавов показали возможность улучшения их 
функциональных свойств по сравнению с чи-
стыми металлами. В первую очередь это касается 
суперсплавов на основе никеля, используемых 
для изготовления рабочих деталей газоэнергети-
ческих установок и авиационных двигателей [2]. 
Однако, несмотря на явный прогресс в этой об-
ласти, температурный предел эксплуатации так 
называемых “высокоэнтропийных” сплавов не 
превышает 900–1000°С [3], поэтому рабочим по-
верхностям ответственных конструкций необхо-
дима защита от воздействия высоких температур, 
достигающих ~1500°С. Технологическим реше-
нием этой проблемы являются термобарьерные 
и коррозионно-стойкие покрытия на основе 
оксидных керамических материалов [4–6]. Для 
этих целей обычно используют стабилизирован-
ный иттрием оксид циркония (YSZ) – уникаль-
ный материал, который, к сожалению, имеет 
верхний температурный предел эксплуатации 

~1200°C [7, 8]. Поиск материалов, способных 
повысить рабочие температуры, а значит, энер-
гетическую и экологическую эффективность 
установок и двигателей, неуклонно ведется на 
основе принципов, представленных в работе [9]. 
Перспективными веществами для нанесения за-
щитных покрытий признаны, в частности, цир-
конаты редкоземельных элементов (РЗЭ) струк-
турного типа пирохлора RE2Zr2O7 [6, 8, 10, 11], 
однако недостаточно высокий коэффициент 
температурного расширения (КТР) и низкая 
вязкость разрушения ограничивают их практи-
ческое применение [12]. Эта ситуация привлек-
ла внимание материаловедов к многокомпо-
нентным оксидам на основе цирконатов РЗЭ, 
и было показано, что сочетание разных РЗЭ в 
катионной подрешетке может значительно улуч-
шить функциональные свойства цирконатов 
благодаря синергетическому эффекту, а имен-
но – ограничить рост зерен, повысить вязкость 
разрушения, уменьшить теплопроводность, 
увеличить КТР и улучшить коррозионную стой-
кость [1, 13–16]. Cочетание разных атомов РЗЭ 
в кристаллической решетке пирохлора приводит 
к появлению дефектов и ее разрыхлению, что 
не только повышает энтальпию смешения твер-
дого раствора (ΔHсм), но и увеличивает его кон-
фигурационную энтропию (ΔSсм). Стабильность 
твердого раствора по сравнению с составляю-
щими его компонентами определяется уровнем 
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свободной энергии Гиббса ΔGсм = ΔHсм – T ΔSсм  
и зависит от температуры. Таким образом, много-
компонентный оксид остается стабильным выше 
некоторой критической температуры [17], зави-
сящей от соотношения энтальпии и энтропии 
смешения. В связи c этим первостепенное значе-
ние приобретают вопросы не только синтеза, но и 
исследования термодинамики многокомпонент-
ных оксидов. Для синтеза многокомпонентных 
цирконатов РЗЭ применяют в основном твердо-
фазный метод с перетираниями компонентов и 
(опционально) прессованием исходных оксидов 
с длительным (до 60 ч) отжигом [18–22], реже 
используют получение из расплава сульфатов 
натрия и калия [23], золь-гель метод [24, 25] или 
соосаждение гидроксидов с последующим про-
каливанием [13, 25]. Главным условием успеш-
ности синтеза является обеспечение однородного 
распределения компонентов по объему образца. 
Примеры более сложных способов синтеза мно-
гокомпонентных оксидов приведены в обзоре 
[26]. Следует отметить, что для окончательного 
формирования кристаллической структуры пи-
рохлора (независимо от способа синтеза) необ-
ходимым этапом является высокотемпературный 
отжиг при 1550–1600°С. Изучение теплоемкости 
этих веществ необходимо для определения тер-
мического поведения, расчетов термодинамиче-
ских и теплофизических параметров, что важно 
для практического применения простых и слож-
ных цирконатов РЗЭ. К настоящему времени вы-
сокотемпературная теплоемкость (300–1400 K) 
измерена для простых (Ln2Zr2O7, где Ln = La, 
Pr, Nd, Sm, Eu, Gd) и двойных (LaLnZr2O7, где  
Ln = Sm, Gd, Dy) цирконатов лантаноидов 
структурного типа пирохлора [27, 28]. Надежных 
данных по высокотемпературной теплоемкости 
других сложных цирконатов РЗЭ в литературе не 
найдено.

Цель настоящей работы – синтез образцов, 
исследование высокотемпературной теплоемко-
сти, температуропроводности и теплопроводно-
сти многокомпонентных цирконатов LaGdZr2O7,  
(LaSmGd)2/3Zr2O7, (LaSmGdY)1/2Zr2O7 и  
(LaNdSmGdY)2/5Zr2O7 структурного типа пирох-
лора. 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
В качестве исходных веществ для синте-

за сложных цирконатов использовали La2O3 
(99.99 мас. %), Sm2O3 (99.995 мас. %), Nd2O3 
(99.99 мас. %), Gd2O3 (99.999 мас. %), ZrOCl2 · 8H2O  
(99.9 мас. %) производства ООО “LANHIT”, со-
ляную кислоту (HCl, 35–38 мас. %, ос. ч.) и раствор 

аммиака (NH4OH, 25–28 мас. %) производства 
ООО “Химмед”. Для проведения синтеза приме-
няли метод обратного осаждения гидроксидов в 
растворе аммиака. Раствор, содержащий стехио-
метрическое соотношение РЗЭ и циркония, го-
товили весовым способом, для чего определяли 
моляльную концентрацию исходных растворов 
индивидуальных компонентов. Методика синте-
за подробно описана в работе [29]. Способ удобен 
тем, что позволяет контролировать синтез на всех 
этапах – от получения гидроксидного прекурсо-
ра заданного состава до промежуточных этапов 
термической обработки. Термический анализ 
гидроксидных прекурсоров проводили методом 
ДСК/ТГ на установке синхронного термическо-
го анализа STA 449F1 Jupiter (Netzsch-Gerätebau 
GmbH, Germany), рентгенофазовый анализ – на 
дифрактометре D8 Advance (Bruker, Germany) 
CuKα-излучение, λ = 1.5418 Å, Ni-фильтр, ин-
тервал углов 2θ = 10°–80°, LYNXEYE-детек-
тор, геометрия на отражение. Морфологию об-
разцов исследовали с помощью электронного 
микроскопа Amber (Tescan, Czech Republic) с 
неиммерсионной колонной BrightBeam с уль-
травысоким разрешением 1.3 нм при ускоряю-
щем напряжении 1 кВ. Для измерения тепло-
емкости образцов при температурах 300–1800 K 
использовали установку термического анализа 
DSC 404 F1 Pegasus (Netzsch-Gerätebau GmbH, 
Germany). Для определения теплоемкости при-
меняли метод отношений с изотермическими 
сегментами (DIN ISO 11357-4) в платинороди-
евых тиглях с крышкой в инертной атмосфере 
со скоростью нагревания 10 град/мин. Кали-
бровку прибора проводили по металлическим 
стандартам. Пределы допускаемых абсолютных 
погрешностей измерения температуры, удель-
ной теплоты и удельной теплоемкости составля-
ли до 3 K, до 3% и от 1 до 3.5% соответственно. 
Для проверки качества работы установки были 
выполнены измерения теплоемкости корунда. 
Для измерения температуропроводности по-
рошки синтезированных оксидов прессовали в 
таблетки диаметром 12.5 мм и толщиной 1–2 мм 
с добавкой поливинилового спирта. Таблетки 
сушили, спекали и отжигали при 1500°С, затем 
их зачерняли графитом и измеряли температу-
ропроводность на приборе LFA 457 MicroFlash 
(Netzch, Germany) от комнатной температуры до 
1273 K с интервалом 100 K в токе высокочисто-
го аргона. Неопределенность метода лазерной 
вспышки, по данным изготовителя, составляет 
~5%. Плотность образцов определяли гидро-
статически. Для расчета мольных масс образцов 
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использовали данные [30], а среднего радиуса 
катионов – рекомендованные в [31] значения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Метод обратного осаждения является опти-

мальным для получения небольших количеств 
однофазных сложных оксидов для проведения 
экспериментальных исследований, так как по-
зволяет получать гомогенную смесь гидрокси-
дов, избегать загрязнений исходных веществ и 
контролировать процесс синтеза на всех этапах. 
Для определения температурных режимов обе-
звоживания и последующего отжига полученных 
осадков их подвергали дифференциальному тер-
мическому анализу с фиксацией потери массы  
(ДСК/ТГ) в интервале температур 100–1450°C 
(рис. 1а–1г). Предварительно осадки обезво-
живали при 95°C в течение 72 ч. На рисунке от-
четливо видны два этапа обезвоживания и уда-
ления гидроксильных групп: при температурах 
100–700 и 1200–1450°C. После первого этапа 
наблюдается слабый экзотермический процесс, 
соответствующий завершению формирования 
наноразмерной флюоритоподобной структуры 
Fm3m (рис. 2б) [32, 33]. Малая величина тепло-
вого эффекта (или его практическое отсутствие) 
(рис. 1) означает, что характерное для флюо-
ритоподобной структуры расположение ионов 
формируется уже на начальных стадиях осаж-
дения и дегидратации осадка, и небольшая кор-
рекция кубической структуры происходит при 
нагреве до 700–800°C. При этом сохраняется 
наноразмерность образцов, что подтверждается 
расчетами по формуле Шеррера из полуширины 
дифракционных отражений (рис. 2б), а также 
РЭМ-изображениями поверхности (рис. 3а), не 
содержащими признаков существования кри-
сталлических частиц с линейными размерами 
>80–100 нм. Отметим, что аналогичный ана-
лиз (РФА и РЭМ) образцов, отожженных при 
1000°C, показывает сохранение наноразмерного 
состояния и флюоритоподобной структуры по-
лученных сложных оксидов. Второй этап удале-
ния гидроксильных групп, как видно из рис. 1, 
наступает при температурах >1200°C. 

Термограмма прекурсора для получения 
LaGdZr2O7, выполненная до температуры 
1600°C и приведенная на рис. 1д, показывает, 
что окончательное взаимодействие компонен-
тов с образованием соединений типа RE2Z-
r2O7 с относительно узкой областью гомоген-
ности [33] сопровождается, как и полагается, 
экзотермическим эффектом и упорядочением 
кристаллической структуры при температурах 

> 1350–1400°C. Как показывает практика, окон-
чательное и устойчивое формирование круп-
нокристаллической структуры происходит при 
температурах 1500–1600°С в течение 4 ч [27]. 

Для исследования высокотемпературной теп
лоемкости, теплопроводности и термическо-
го расширения было получено четыре образца 
сложных оксидов структурного типа пирохлора:  
LaGdZr2O7, (LaSmGd)2/3Zr2O7, (LaSmGdY)1/2Zr2O7  
и (LaNdSmGdY)2/5Zr2O7. Окончательный отжиг 
образцов проводили при температуре 1600°C 
для полной кристаллизации образца и ухода из 
наноразмерного состояния (>100 нм), что под-
тверждается анализом дифрактограмм (рис. 2в) 
и РЭМ поверхности (рис. 3б). В этом случае не 
нужно вносить поправки на размерность образ-
цов в полученные данные. 

В табл. 1 приведены молекулярные массы, па-
раметры и тип кубических решеток, средний ра-
диус катиона RE3+ [31], величина r/rZr и параметр 
разупорядочения δ [34]:
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где сi – мольная доля i-го компонента. 
Как известно [35], соотношение ионных ра-

диусов редкоземельного элемента и циркония 
r(RE3+)/r(Zr4+) определяет области существова-
ния пирохлоров RE2Zr2O7 (r/rZr > 1.46) и твердых 
растворов структурного типа дефектного флюо-
рита Ln2O3 ‧ 2ZrO2 (r/rZr < 1.46). Из табл. 1 видно, 
что все синтезированные цирконаты сложных 
оксидов лантаноидов располагаются в области 
значений параметра r/rZr для пирохлоров, при-
чем (LaSmGdY)1/2Zr2O7 находится практически в 
пограничной области пирохлор–флюорит. Ме-
нее известен параметр разупорядочения δ, кото-
рый, как считается [19, 36], является критерием 
способности многокомпонентных оксидов об-
разовывать однофазные материалы. 

В работе [19] экспериментально установлено, 
что для существования однофазных высоко- и 
среднеэнтропийных цирконатов значение δ 
должно быть <5.2–5.3%, хотя синтезированный 
нами (LaSmGdY)1/2Zr2O7, как показано в настоя-
щей работе, является однофазным при δ = 5.47% 
(рис. 2б, фотография 3). Возможно, это связано 
с различиями в способе приготовления: в [19] 
применяли керамический синтез с отжигом в те-
чение 2 ч при 1400–1600°C, что, на наш взгляд, 
является недостаточным. Необходимо отметить, 
что средние величины параметров кубических 
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решеток, рассчитанные как среднее арифмети-
ческое данных [27], несколько меньше экспери-
ментальных значений. 

В табл. 1 приведены молекулярные массы, 
экспериментальные и расчетные параметры и 

тип кубических решеток, средний радиус кати-
она RE3+ [31], величина r/rZr и параметр разупо-
рядочения δ. Плотность ρ образцов измеряли 
гидростатически, а теоретическую плотность ργ 
рассчитывали из дифракционных данных.
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Рис. 1. Результаты ДСК/ТГ-анализа прекурсоров для получения LaGdZr2O7 (а), (LaSmGd)2/3Zr2O7 (б),  
(LaSmGdY)1/2Zr2O7 (в) и (LaNdSmGdY)2/5Zr2O7 (г); ДСК прекурсора LaGdZr2O7 (д).
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Рис. 3. Морфология поверхности образцов LaGdZr2O7 (1), (LaSmGd)2/3Zr2O7 (2), (LaSmGdY)1/2Zr2O7 (3) и  
(LaNdSmGdY)2/5Zr2O7 (4), отожженных при 800 (а) и 1600°C (б); увеличение ×60000.
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Высокотемпературная теплоемкость из-
мерена методом ДСК в интервале температур 
300–1800 K. Полученные результаты приведены 
в табл. 2 в виде коэффициентов уравнения Май-
ера–Келли [37]:
	 C A B T C Tp � � · – 2 	 (2)
наряду с данными для индивидуальных и двой-
ных цирконатов лантаноидов из работ [27, 28].

В большинстве случаев высокотемператур-
ную теплоемкость рассчитывают из простых 
оксидов, используя правило Неймана–Коппа, 
например [13, 18, 20, 22], хотя ограниченность 
этого метода описана в работе [38]. Сравнение 
молярной теплоемкости LaGdZr2O7 (рис. 4, кри-
вая 1), измеренной экспериментально и рассчи-
танной из теплоемкостей двойных цирконатов 
Ln2Zr2O7 и простых оксидов из работ [39, 40] 
(табл. 2, рис. 4, кривые 2, 3 соответственно), 
показало существенные отклонения расчетных 
величин от экспериментальных данных, кото-
рые особенно велики при высоких температурах 
(до 4–8%). Таким образом, для получения более 
точных значений теплоемкости требуются пря-
мые измерения. 

Температуропроводность синтезированных 
оксидов определяли методом лазерной вспыш-
ки (рис. 5а), а теплопроводность беспори-
стых образцов рассчитывали в соответствии с 

Таблица 1. Молекулярная масса (М.м.), параметр кристаллической решетки (а), средний радиус катиона RE (ṝ), 
отношение ṝ/rZr, параметр разупорядочения (δ), плотность (ρ) и рентгеновская плотность (ργ) синтезированных 
цирконатов

Оксид М.м.,
г/моль

Параметр a, Å
ṝ, Å ṝ/rZr δ, %

Плотность, г/см3

эксп. расч. [27] ρ ργ

LaGdZr2O7 590.701 10.687 10.660 1.106 1.537 4.83 4.73 6.35

(LaSmGd)2/3Zr2O7 592.1877 10.659 10.632 1.097 1.524 4.54 4.81 6.49

(LaSmGdY)1/2Zr2O7 562.204 10.606 10.568 1.053 1.462 5.47 4.75 6.26

(LaNdSmGdY)2/5Zr2O7 566.347 10.612 10.587 1.084 1.506 3.54 4.81 6.29

Таблица 2. Молярная теплоемкость простых и сложных цирконатов РЗЭ. Cp (Дж/(моль K)) = A + B × T – C/T2

Оксид A B C Температура, K Литература

La2Zr2O7 254.0 0.039840 3893980 300–1400 [27]

Nd2Zr2O7 280.5 0.003072 4880963 300–1400 [27]

Sm2Zr2O7 311.0 0.002660 7765115 300–1400 [27]

Gd2Zr2O7 261.9 0.047638 5113179 300–1400 [27]

LaGdZr2O7 274.6 0.023592 4311357 330–1400 [28]

LaGdZr2O7 265.1 0.032441 3694211 300–1800 Наст. раб.

(LaSmGd)2/3Zr2O7 256.5 0.035286 3709212 300–1800 Наст. раб.

(LaSmGdY)1/2Zr2O7 253.4 0.035447 3738716 300–1800 Наст. раб.

(LaNdSmGdY)2/5Zr2O7 266.8 0.038018 3654596 300–1800 Наст. раб.
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Рис. 4. Молярная теплоемкость LaGdZr2O7:  
1 – эксперимент; 2, 3 – расчеты по Нейману–Коппу: 
2 – из теплоемкостей двойных цирконатов (табл. 2), 
3 – из теплоемкостей простых оксидов [39, 40].
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рекомендациями [41] по следующим соотноше-
ниям:

	 � �k сp ��, 	  (3)

где kʹ – теплопроводность пористого образца 
плотностью ρ, сp – удельная теплоемкость, α – 
измеренная температуропроводность. Пересчет 
к теплопроводности беспористых образцов (k) 
осуществляли с помощью следующих соотноше-
ний: 

	 k k� � ( )– ,1 4 3  � 	 (4)

	 � � ���1– , 	 (5)

где k – теплопроводность беспористого образца, 
φ – пористость, ργ – теоретическая (рентгенов-
ская) плотность образца (табл. 1).

Результаты расчета теплопроводности беспо-
ристых оксидов представлены на рис. 5б.

Как видно из рис. 5, наименьшей темпера-
туро- и теплопроводностью обладает образец 
(LaSmGd)2/3Zr2O7 (кривые 2). Добавление ок-
сида иттрия (кривые 3) резко увеличивает тем-
пературо- и теплопроводность сложных окси-
дов, а последующее добавление оксида неодима 
(кривые 4) приводит к некоторому понижению 
этих величин. Сравнение с литературными дан-
ными по теплопроводности диоксида циркония 
(ZrO2 ~2.17 Вт/(м K) [4]), стабилизированных 
иттрием диоксидов циркония (3YSZ ~2.3–3.2, 
8YSZ ~1.8–2.0 [41], 30YSZ ~3 Вт/(м K) при 300 K 
[42]), а также двойных цирконатов лантанои-
дов (La2Zr2O7 ~1.56 [4], Gd2Zr2O7 ~1.2–1.9 [43], 
Sm2Zr2O7 (пористый) ~0.8–1.2 Вт/(м K) [44]) 

показывает преимущество сложных оксидов с 
точки зрения достижения наиболее низких зна-
чений теплопроводности. К сожалению, экс-
периментальных данных по теплопроводности 
твердого раствора Y2O3 ‧ 2ZrO2 (33.3YSZ) при 
температурах >300 K в литературе не найдено. 
Понятно, однако, что добавка оксида иттрия в 
состав многокомпонентных цирконатов не спо-
собствует дальнейшему понижению теплопро-
водности. Наиболее вероятной причиной явля-
ются практически одинаковые атомные массы 
иттрия и циркония.

ЗАКЛЮЧЕНИЕ
Методом обратного осаждения гидроксидов 

получены образцы многокомпонентных цир-
конатов РЗЭ: LaGdZr2O7, (LaSmGd)2/3Zr2O7, 
(LaSmGdY)1/2Zr2O7, (LaNdSmGdY)2/5Zr2O7). По-
казано, что полное взаимодействие компонентов 
и кристаллизация в структурном типе пирохлора 
происходят в области температур 1500–1600°С. 
Идентификация образцов проведена методами 
РФА и РЭМ, определены параметры кубических 
решеток и морфология поверхности. Получены 
зависимости высокотемпературной теплоем-
кости в области 300–1800 K и температуропро-
водности в интервале 300–1300 K. Выполнены 
расчеты теплопроводности беспористых образ-
цов и показано, что увеличение числа лантано-
идов в сложном оксиде приводит к понижению 
теплопроводности, а добавление иттрия – к ее 
возрастанию, что следует учитывать при выборе 
материалов для термобарьерных покрытий или 
твердооксидных топливных элементов.
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Рис. 5. Температуропроводность (а) и теплопроводность (б) образцов LaGdZr2O7 (1), (LaSmGd)2/3Zr2O7 (2), (LaSmGdY)1/2Zr2O7 (3)  
и (LaNdSmGdY)2/5Zr2O7 (4).
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The synthesis of multicomponent single-phase rare earth zirconates LaGdZr2O7, (LaSmGd)2/3Zr2O7,  
(LaSmGdY)1/2Zr2O7, (LaNdSmGdY)2/5Zr2O7 of the pyrochlore structure was performed. The isobaric heat ca-
pacity at 300–1800 K, thermal diffusivity were measured and the thermal conductivity of non-porous samples in 
the range of 300–1300 K was calculated.
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