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Ключевые слова: многокомпонентные твердые растворы, перовскит, термический анализ

DOI: 10.31857/S0044457X25040044, EDN:  ASNLBS 

ВВЕДЕНИЕ
Необычные сегнетоэлектрические характери-

стики перовскитов ABO3, содержащих в позици-
ях A и B более одного катиона, например релак-
сация с широким максимумом на температурной 
зависимости диэлектрической проницаемости, 
положение которого зависит от частоты электри-
ческого поля [1], связаны с явлениями порядок–
беспорядок и искажениями кристаллической 
решетки [2]. В кубической перовскитной струк-
туре катионы разной валентности могут распре-
деляться в кислородных октаэдрах беспорядочно 
или упорядоченно с удвоением параметра эле-
ментарной ячейки [3]. Cтепень упорядочения S 
оценивается по интенсивности сверхструктур-
ных дифракционных рефлексов [4].

Для упорядоченной и неупорядоченной пе-
ровскитных структур температуры Кюри (TC) от-
личаются при переходах сегнетоэлектрик (СЭ)–
параэлектрик (ПЭ), а уменьшение S приводит 
к размытию перехода СЭ–ПЭ и появлению ре-
лаксорных свойств у СЭ [5]. Среди факторов, 
влияющих на упорядочение в сложных перов-
скитах, наряду со способом синтеза, температу-
рой и временем отжига, фигурирует соотноше-
ние разнозарядных катионов в позициях A или 
B [6, 7]. Упорядочению с удвоением парамет- 
ра элементарной ячейки способствуют стехио-
метрические соотношения между В-катионами 

(Mg2+, Sc3+, Ti4+, Sn4+, Nb5+, Ta5+, W6+), что наблю-
дается в PbBO3 [8], и возможность занятия кати-
оном обеих позиций, как это происходит в пе-
ровскитах системы BaO–Y2O –CuO–WO3 [9, 10], 
обладающих высокой степенью упорядочения 
[11]. Разупорядочение, несмотря на продолжи-
тельные отжиги и преимущественное заселение 
катионом Y3+ позиций B, происходит в перовски-
тах системы BaO–Y2O3 –CuO–Nb2O5  [12]. В си-
стемах BaO–Y2O3–CuO–MoO3 [13, 14] и BaO–
Y2O3–CuO–MoO3–TiO2 [15] для перовскитов со 
структурой Pm3m усредненный заряд катионов 
B <4, при этом отмечается низкая степень упо-
рядочения и присутствие твердого раствора с 
кубической структурой F43m. Получение одно-
фазного молибденсодержащего перовскита для 
последующего изучения сегнетоэлектрических 
особенностей представляет материаловедче-
ский интерес. В настоящей работе исследована 
возможность получения перовскитов в системе 
BaO–Sc2O3–CuO–MoO3 путем варьирования 
химического состава, температуры и атмосферы 
отжига.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Образцы системы BaO–Sc2O3–CuO–MoO3 

синтезировали методом сжигания геля, в качестве 
исходных реагентов использовали BaO (99.8%, 
ТУ 6-09-5397-88), Sc2O3 (ОС-99.9, ТУ 4854-77),  
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CuO (99.98%, ос. ч., ТУ 6-09-3098-73), MoO3 
(99.6%, ч. д. а., ТУ 6-09-4471-77). Реагенты, 
взятые в соответствующих стехиометриче-
ских количествах, растворяли в разбавленной 
(HNO3 :  H2O = 1 : 1 (об.)) азотной кислоте, рас-
твор упаривали, переносили в керамическую 
чашку и добавляли восстановитель (органиче-
ское топливо) – поливиниловый спирт (16/1, 
CAS: 9002-89-5). При дальнейшем упаривании 
образовывался гель, который после кратковре-
менного возгорания превращался в серо-черный 
порошок. Полученный порошок перетирали, 
переносили в керамический тигель, отжигали 
при температурах 900, 1000 и 1070°C в течение 
3 ч, а затем охлаждали в печи в инерционно-тер-
мическом режиме.

Отжиг образцов в токе кислорода 
(99.99 об. % O2) и аргона (99.9995 об. % Ar) прово-
дили в горизонтальной кварцевой трубке-реак-
торе, герметизированной с помощью шлифовых 
соединений в вакуумном исполнении, обогрева-
емой снаружи при помощи трубчатой печи. Для 
этого использовали алундовые цилиндрические 
тигли с dвнутр = 7 мм, dвнешн = 9 мм, l = 35 мм. Об-
разцы, предварительно выдержанные при 600°C 
для удаления органических примесей, отжигали 
при 900°C в течение 2 ч с последующим охлажде-
нием до комнатной температуры в токе соответ-
ствующих газов (O2/Ar) в инерционном режиме. 

Содержание элементов Ba, Sc, Cu и Mo в об-
разцах контролировали методом рентгенофлу-
оресцентной спектрометрии на спектрометре 
Спектроскан МАКС-GVM (НПО “Спектрон”, 
Россия). В табл. 1 представлены результаты хи-
мического анализа образца Ba4Sc2CuMoO11.

Рентгенофазовый анализ (РФА) выполняли 
на дифрактометре Bruker Advance D8 (“BRUKER 
AXS GmbH”, Германия), излучение CuKα в ин-
тервале углов 2θ = 10°–70° с шагом сканирова-
ния 0.0133°. Результаты обрабатывали с исполь-
зованием программного пакета DIFFRAC.EVA 
и базы данных PDF2. Количественный фазовый 

анализ проводили с помощью полнопрофиль-
ного анализа по методу Ритвельда с использова-
нием программного обеспечения TOPAS 4.2. 

Дифференциальный термический и термо-
гравиметрический анализ (ДТА/ТГ) образцов 
выполняли на установке Derivatograph Q-1500D 
(“МОМ”, Венгрия) с модернизированными бло-
ком управления нагревателем и системой реги-
страции. Базовая точность термовесов составляла 
±0.5%, погрешность измерения температуры не 
превышала ±3°C. Образцы нагревали в платино-
вых тиглях в интервале температур 25–1000°C со 
скоростью 10 град/мин. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
В квазичетверной системе  

BaO–Sc2O3–CuO–MoO3 исследовали два состава: 
Ba4ScCuMo2O11, аналогичный составу кубическо-
го перовскита Ba4YCuW2O11 [11], и Ba4Sc2CuMoO11,  
аналогичный составу твердых растворов с куби-
ческой ячейкой Ba4Y2CuMoO11 [13, 14].

На рис. 1 представлены результаты РФА об-
разца Ba4ScCuMo2O11, отожженного при разных 
температурах. В отличие от кубического перов-
скита в иттрий-вольфрамовой системе [11], в 
скандий-молибденовой системе образуется пе-
ровскитоподобный тетрагональный твердый 
раствор на основе Ba2ScCuO4+δ [16, 17]. В каче-
стве второй фазы во всех образцах присутствует 
BaMoO4, а при низкой температуре отжига на-
блюдается также примесь купрата BaCuO2. 

В структуре перовскита Ba2ScCuO4+d катионы 
Sc2+ и Cu2+ занимают разные кристаллографиче-
ские позиции. Ионы Sc2+ образуют устойчивые 
октаэдры ScO6, чередующиеся вдоль оси с со сло-
ями Cu–O [18], в которых кислородные позиции 

Таблица 1. Результаты химического анализа образца 
Ba4Sc2CuMoO11

Элемент
Массовая доля металлов, %

теоретическая экспериментальная

Ba 68.8 68.2

Sc 11.3 11.0

Cu 8.0 7.8

Mo 11.9 13.0

Ba ScCuO2 4+δ

BaMoO   4

BaCuO2

10  20  30  40  50  60
2θ, град 

I

Рис. 1. Дифрактограммы образца Ba4ScCuMo2O11, 
отожженного при 900 (1), 1000 (2) и 1070°C (3).
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заполнены лишь на четверть. Вероятно, кати-
оны Mo6+ внедряются в структуру Ba2ScCuO4+d 
только на позиции Cu2+, компенсируя тем са-
мым недостаток кислорода, а замещения Sc2+ не 
происходит, поэтому для состава Ba4ScCuMo2O11 
наблюдается примесь молибдата бария.

Опираясь на результаты исследования фазо-
вых состояний в системе BaO–Y2O3–CuO–MoO3 
[13, 14], мы изучили возможность образования 
перовскита состава Ba4Sc2CuMoO11. В результа-
те отжига прекурсора на воздухе при темпера-
туре 900°C основной фазой (~60%) в образце 
Ba4Sc2CuMoO12–δ является перовскитоподобный 
твердый раствор на основе Ba2ScCuO4+d, однако 
наличие большого количества примесных фаз 
свидетельствует о неполном протекании реак-
ции взаимодействия (рис. 2, линия 1). При уве-
личении температуры отжига до 1000°C содер-
жание примесей значительно снижается (рис. 2, 
линия 2), сохраняются небольшие количества 
оксида скандия Sc2O3 и тетрагональной фазы 
Ba3Sc4Cu3O12 [19–21]. Последующий отжиг при 
1070°C принципиально не меняет фазовый со-
став образца (рис. 2, линия 3). 

Поскольку образец Ba4Sc2CuMoO11 содер-
жит элементы с переменной валентностью, 
парциальное давление кислорода может оказы-
вать существенное влияние на формирование 
перовскитоподобной фазы [22–24]. В связи с 
этим были проведены сравнительные отжиги в 
атмосфере кислорода и аргона при температу-
ре 900°C. Повышение парциального давления 
кислорода способствовало уменьшению коли-
чества примесных фаз, суммарный фазовый 

состав не отличался от состава образца после 
высокотемпературного отжига на воздухе, в об-
разце присутствовали лишь Sc2O3 и Ba3Sc4Cu3O12 
(рис. 2, линия 4). Напротив, отжиг Ba4Sc2CuMoO11  
в инертной атмосфере позволил получить прак-
тически однофазный перовскит на основе 
Ba2ScCuO4+d (рис. 2, линия 5).

Твердый раствор Ba4Sc2CuMoO11, образую-
щийся при эквимолярном замещении Cu на 
Mo в Ba2ScCuO4.5 [25], был проиндицирован в 
тетрагональной структуре P4/mmm с параметра-
ми кристаллической решетки a = b = 4.0984(4), 
c = 8.173(2) Å и V = 137.28(4) Å3 (рис. 3). 

Термическое поведение перовскитоподобного 
твердого раствора Ba4Sc2CuMoO11 было исследо-
вано методом ДТА-ТГ на образцах, отожженных 
в атмосферах O2 и Ar (рис. 4). Для образца, отож-
женного в кислороде, на кривой ДТА (рис. 4а) 
фиксируются эндоэффекты с экстремумами при 
818 и 973°C. При этом уменьшение массы об-
разца происходит монотонно во всем интервале 
температур 25–1000°C и составляет ~3%. Для 
образца, отожженного в аргоне (рис. 4б), внача-
ле происходит оксидирование, на что указывает 
экзоэффект около 500°C, подобно тому, как это 
наблюдалось для Sr0.8Gd0.2CoO3–δ в работе [26]. 

Далее на термограмме присутствуют эн-
доэффекты с экстремумами при 811 и 961°C, 
при этом общая потеря массы образца со-
ставляет 2.5%. Таким образом, оба образца 
твердого раствора Ba4Sc2CuMoO11 вне зависи-
мости от кислородной стехиометрии характе-
ризуются эндоэффектами, которые могут быть 
связаны с существованием структурного пере-
хода порядок–беспорядок, характерного для 

10  20  30  40  50  60
2θ, град 

I

Ba ScCuO2 4+δ

Sc O2 3

BaMoO   4

BaCuO2

Ba Sc Cu3O3 4 12

BaCO3

Рис. 2. Дифрактограммы образца Ba4Sc2CuMoO11, 
отожженного на воздухе при 900 (1), 1000 (2), 1070°C (3)  
и при 900°C в атмосфере кислорода (4) и аргона (5).

2θ, град 

I

0 15 20 25 30 35 40 45 50 55 60

R  = 9.96%p

R  = 12.58%wp

GoF = 1.24

Рис. 3. Экспериментальная (1), расчетная (2) и раз-
ностная (3) дифрактограммы Ba4Sc2CuMoO11. Внизу 
показаны положения рефлексов P4/mmm структуры.
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перовскитоподобных металлооксидных соеди-
нений. Для подтверждения этого предположе-
ния и выяснения природы данного перехода не-
обходимы более детальные исследования.

ЗАКЛЮЧЕНИЕ
Методом сжигания геля впервые полу-

чен перовскитоподобный твердый раствор  
Ba4Sc2CuMoO11 с тетрагональной структурой  
P4/mmm и определены его кристаллографиче- 
ские параметры. Установлено, что Ba4Sc2CuMoO11  
испытывает структурное превращение в интер-
вале температур 810–820°C. 
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PEROVSKITE-LIKE SOLID SOLUTION  
IN BaO– Sc2O3–CuO–MoO3 SYSTEM
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D. F. Kondakova,  A. A. Arkhipenkoa
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In the quasi-quaternary system BaO–Sc2O3–CuO–MoO3 the possibility of obtaining phases with perovskite 
structure was investigated by varying the chemical composition, temperature and annealing atmosphere. A per-
ovskite-like solid solution Ba4Sc2CuMoO11 with tetragonal structure was obtained by the gel combustion method 
followed by annealing in argon atmosphere at 900°C. Low-enthalpy solid-phase transformations of Ba4Sc2CuMoO11  
at 810–820 and 960–975°C were found by DTA-TG. 
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