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Исследована четырехкомпонентная взаимная система Na+,Rb+||Cl–,I–,CrO4   
2–, низкоплавкие составы на 

основе которой перспективны для разработки электролитов для химических источников тока и тепло-
аккумулирующих материалов. Проведено разбиение системы на стабильные симплексы с помощью 
теории графов и построено древо фаз системы, в состав которого входят три стабильных тетраэдра, 
связанных между собой двумя стабильными треугольниками. С помощью дифференциального терми-
ческого и термогравиметрического анализов изучены фазовые равновесия в стабильном треугольнике 
NaCl–Na2CrO4–RbI и определена температура плавления и содержание компонентов в трехкомпо-
нентной эвтектике: 430°С, NaCl – 20%, Na2CrO4 – 48%, RbI – 32% (экв.). Состав кристаллизующихся в 
эвтектике фаз подтвержден методом рентгенофазового анализа. 
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ВВЕДЕНИЕ 
Обзор литературных источников показал, что 

расплавы из хроматов и галогенидов щелочных 
металлов имеют широкое практическое приме-
нение. Данные солевые смеси применяются при 
разработке систем хранения тепла [1–5], для по-
лучения флюсов, используемых при пайке [6, 7], 
в качестве расплавляемых электролитов хими-
ческих источников тока [8–12]. Расплавы и рас-
творы различных солей щелочноземельных ме-
таллов отвечают требованиям, которым должны 
соответствовать электролиты для химических 
источников тока [13, 14]. Галогениды щелоч-
ных металлов активно применяются в приборах, 
применяемых в системе сигнализаций, а именно 
в газоразрядных лампах, имеющих высокое дав-
ление [15]. Хроматы щелочных металлов исполь-
зуются в роли сильных окислителей и красок из-
за наличия ярких и насыщенных цветов [16]. В 
настоящее время многокомпонентные системы 
с участием галогенидов и хроматов щелочных 
металлов полностью не изучены. В связи с этим 
целью настоящей работы является исследова-
ние четырехкомпонентной взаимной системы 
Na+,Rb+||Cl–,I–,CrO4   

2–.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Схема развертки и треугольная призма 

четырехкомпонентной взаимной системы  
Na+,Rb+||Cl–,I–,CrO4   

2– представлены на рис. 1. 
Система Na+,Rb+||Cl–,I–,CrO4   

2– состоит из двух 
трехкомпонентных систем и трех трехкомпо-
нентных взаимных систем. 

Согласно [17, 18], в системах NaCl–NaI–Na2CrO4 
и RbCl–RbI–Rb2CrO4 кристаллизуются трехком-
понентные эвтектики. Трехкомпонентные огра-
няющие взаимные системы изучены ранее. В си-
стеме Na+,Rb+||Cl–,I– установлено образование 
двух эвтектик [19], в системе Na+,Rb+||I–,CrO4   

2–  
также присутствуют две эвтектики [20]. Толь-
ко трехкомпонентная взаимная система  
Na+,Rb+||Cl–,l–,CrO4   

2– пока не исследована. Дан-
ные по двухкомпонентным системам NaCl–NaI,  
NaCl–Na2CrO4, RbСl–Rb2CrO4, NaCl–RbCl, 
RbCl–RbI, RbI–Rb2CrO4, NaI–Na2CrO4,  
Na2CrO4–Rb2CrO4, NaI–RbI взяты из работ [21–28]. 

Для реакций ионного обмена, протекающих в 
точках конверсии трехкомпонентных взаимных 
систем, выполнен расчет изменения энтальпии 
и энергии Гиббса для стандартных условий.
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В трехкомпонентной взаимной системе 
Na+,Rb+||Cl–,CrO4   

2– в точке конверсии К1 проис-
ходит реакция ионного обмена:

Na2CrO4 + 2RbCl ⇄ 2NaCl + Rb2CrO4;  
∆rH° = –20.2 кДж, ∆rG° = –18.7 кДж.

В трехкомпонентной взаимной системе 
Na+,Rb+||I–,CrO4   

2– в точке конверсии К2 происхо-
дит реакция ионного обмена:

2NaI + Rb2CrO4 ⇄ Na2CrO4 + 2RbI;  
∆rH° = –19.8 кДж; ∆rG° = –19.6 кДж.

В трехкомпонентной взаимной системе 
Na+,Rb+||Cl–,I– в точке конверсии К3 происходит 
реакция ионного обмена:

NaI + RbCl ⇄ NaCl + RbI;  
∆rH° = –20 кДж; ∆rG° = –19.2 кДж.
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Рис. 1. Cхема развертки и призма составов четырехкомпонентной взаимной системы Na+,Rb+||Cl–,I–,CrO4   
2–.
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Рис. 2. Древо фаз четырехкомпонентной взаимной системы Na,Rb||Cl,I,CrO4.
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С помощью метода теории графов [18] про-
ведено разбиение системы Na+,Rb+||Cl–,I–,CrO4   

2–  
на симплексы. Матрица смежности четырехкомпо-
нентной взаимной системы Na+,Rb+||Cl–,I–,CrO4   

2– 

 приведена в табл. 1. 
По данным, представленным в таблице, со-

ставлено логическое выражение, являющееся 
произведением сумм индексов несмежных вер-
шин:

(X2 + X4)(X2 + X6)(X3 + X4).

Методом выписывания недостающих вершин 
для не имеющих связи графов получены следую-
щие симплексы:

1) X1X4X5X6, NaCl–RbCl–RbI–Rb2CrO4;
2) X1X3X5X6, NaCl–Na2CrO4–RbI–Rb2CrO4;
3) X1X2X3X5, NaCl–NaI–Na2CrO4–RbI.
Треугольники Rb2CrO4–NaCl–RbI и 

Na2CrO4–NaCl–RbI являются общими 
для тетраэдров NaCl–RbCl–RbI–Rb2CrO4, 

NaCl–Na2CrO4–RbI–Rb2CrO4 и NaCl–Na2CrO4–
RbI–Rb2CrO4, NaCl–NaI–Na2CrO4–RbI соот-
ветственно. Древо фаз системы изображено на 
рис. 2.

Экспериментальное исследование стабиль-
ного треугольника NaCl–Na2CrO4–RbI, изо-
браженного на рис. 3, проведено методом диф-
ференциального термического анализа (ДТА). 
Термогравиметрический анализ (ТГА) прово-
дили на дериватографе Q-1500D в режиме кон-
тролируемой скорости нагревания 20 град/мин 
до 800°С. Исходные реактивы NaCl (ч. д. а.),  
RbI (ч.) и Na2CrO4 (ч.) предварительно были обе-
звожены. Температуры плавления, полиморф-
ного превращения (ta⇄b(Na2CrO4) = 730°С) инди-
видуальных солей соответствовали справочным 
данным [22, 23]. Все составы выражены в экв. %. 
Рентгенофазовый анализ (РФА) образцов про-
водили на дифрактометре ARL X'TRA. Съемку 
дифрактограмм осуществляли в CuKα-излуче-
нии с никелевым b-фильтром.
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Рис. 3. Проекция ликвидуса на треугольник составов 
NaCl–Na2CrO4–RbI.
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Рис. 4. Т–х-диаграмма политермического разреза FG.

Таблица 1. Матрица смежности четырехкомпонент-
ной взаимной системы Na+,Rb+||Cl–,I–,CrO4   

2–

Соединение Индекс X1 X2 X3 X4 X5 X6

NaCl X1 1 1 1 1 1 1
NaI X2 1 1 0 1 0
Na2CrO4 X3 1 0 1 1
RbCl X4 1 1 1
RbI X5 1 1
Rb2CrO4 X6 1
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РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Для нахождения трехкомпонентной эвтектики в 

стабильном треугольнике NaCl–Na2CrO4–RbI  
четырехкомпонентной взаимной системы был 
экспериментально исследован политермиче-
ский разрез FG (F [NaCl – 50%, Na2CrO4 – 50%]; 
G [NaCl – 50%, RbI – 50%]) в поле кристал-
лизации хлорида натрия (рис. 4). Полученная 
Т–х-диаграмма разреза FG позволила опреде-
лить температуру плавления эвтектической сме-
си и направление на эвтектику, т.е. соотношение 
компонентов хромата натрия и иодида рубидия 
в эвтектике. Далее изучен политермический раз-
рез NaCl → E → E, выходящий из вершины хло-
рида натрия и проходящий через направление на 
эвтектику E, на основании которого установлено 
процентное содержание всех трех компонентов 
в эвтектике. T–x-диаграмма политермического 
разреза NaCl → E → E представлена на рис. 5. 
Таким образом, координаты трехкомпонентной 
эвтектики E: 430°С, NaCl – 20%, Na2CrO4 – 48%, 
RbI – 32%.

На дериватограммах нагревания и охлажде-
ния образца состава NaCl – 20% + Na2CrO4 –  
– 48% + RbI – 32% (масса навески 1 г) (рис. 6 и 7)  
зафиксированы эндо- и экзоэффекты, соответ-
ствующие плавлению и кристаллизации трех-
компонентной эвтектики соответственно. 

Для эвтектического сплава эксперименталь-
но измерена удельная энтальпия плавления. 
Для измерения использовали установку ДТА 
с нижним подводом термопар. Кривые охлаж-
дения и нагревания исследуемого образца эв-
тектического состава и эталонного вещества 
(PbCl2) снимали по семь раз. Площади пиков 
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дифференциальных кривых ДТА ограничивали 
в соответствии с рекомендациями Международ-
ного комитета по стандартизации в термическом 
анализе [29]. Расчет удельной энтальпии плавле-
ния состава проводили по формуле, приведен-
ной в [30]. Точность определения удельных эн-
тальпий плавления составляла ±5%.

Кристаллизующиеся фазы в стабильном эле-
менте древа фаз – треугольнике NaCl–Na2CrO4–
RbI – подтверждены методом РФА (рис. 8). На 
рентгенограмме зафиксированы рефлексы, со-
ответствующие кристаллическим фазам хлорида 
натрия, иодида рубидия и хромата натрия (низ-
котемпературная α-модификация). Характери-
стики эвтектического состава представлены в 
табл. 2.

ЗАКЛЮЧЕНИЕ
Результаты ДТА и РФА позволяют утвер-

ждать, что треугольник NaCl–Na2CrO4–RbI, 
принадлежащий древу фаз четырехкомпонент-
ной взаимной системы Na+,Rb+||Cl–,I–,CrO4   

2–, 
является стабильным, т.е. при кристаллизации 
солевых смесей из расплава отсутствует хими-
ческое взаимодействие между компонентами. 
Поверхность ликвидуса представлена тремя по-
лями кристаллизации: хлорида натрия, иоди-
да рубидия и хромата натрия. Низкая величина 
(<200 кДж/кг) энтальпии плавления позволяет 
рекомендовать эвтектическую солевую смесь к 

использованию в качестве среднетемператур-
ных (400–600°С) расплавляемых электролитов 
для химических источников тока.
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STUDY OF PHASE EQUILIBRIA IN THE STABLE TRIANGLE  
NaCl–Na2CrO4–RbI OF THE FOUR-COMPONENT RECIPROCAL  

SYSTEM Na+,Rb+||Cl−,I−,CrO4   
2− 

K. D. Pleshakova, *,  E. M. Dvoryanovaa,  I. K. Garkushina 

aSamara State Technical University, Samara, 443100 Russia
*e-mail: pleshakovkd2001@mail.ru

The paper studies the four-component mutual system Na+,Rb+||Cl–,I–,CrO4   
2–, low-melting compositions based 

on which are promising for the development of electrolytes for chemical current sources and heat-accumulat-
ing materials. The system is divided into stable simplices using graph theory and a phase tree of the system is 
constructed, which includes three stable tetrahedra connected to each other by two stable triangles. Using dif-
ferential thermal analysis (DTA) and thermogravimetric analysis (TGA), phase equilibria in the stable triangle  
NaCl–Na2CrO4–RbI were studied. As a result, the melting point and the content of components in the 
three-component eutectic were determined: E 430°C, NaCl – 20%, Na2CrO4 – 48%, RbI – 32% (equiv.). The 
composition of the crystallizing phases in the eutectic was confirmed by X-ray diffraction (XRD).

Keywords: physicochemical analysis, electrolyte, differential thermal analysis, eutectic, X-ray diffraction
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