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Порошки, содержащие березовый активированный уголь (БАУ) и оксид железа (FexOy) с различным 
соотношением компонентов (80/20 и 20/80 мас. %), синтезированы методом химического соосажде-
ния солей железа в присутствии NH4OH. Оценка морфологии, текстуры и структуры полученных ком-
позитов выполнена с помощью методов лазерной дифракции, растровой электронной микроскопии, 
низкотемпературной адсорбции-десорбции азота, дифракции рентгеновских лучей. Выявлено, что 
синтезированные порошки представляют собой мезопористые материалы. Исследованы сорбционные 
свойства угля, оксида железа и железосодержащих композитов по отношению к лекарственному сое-
динению тетрациклину. Установлено, что эффективность сорбции антибиотика увеличивается в ряду 
FexOy < БАУ < БАУ/FexOy-20/80 < БАУ/FexOy-80/20. Кинетика адсорбции тетрациклина на исследуемых 
порошках описана уравнениями реакций псевдопервого и псевдовторого порядка.
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ВВЕДЕНИЕ
В последние десятилетия железосодержа-

щие наноматериалы вызывают большой инте-
рес в связи потенциальными возможностями 
их применения для решения широкого круга 
актуальных междисциплинарных задач в обла-
сти биотехнологии, медицины и экологии [1–3]. 
Среди широко изучаемых в настоящее время на-
ночастиц можно выделить оксиды железа, такие 
как магнетит Fe3O4, маггемит γ-Fe2O3 и гематит 
α-Fe2O3, которые обладают низкой стоимостью, 
экологической безопасностью и способностью к 
биодеградации [4–6]. Благодаря своим химиче-
ским и физическим свойствам, а также наличию 
высокоразвитой активной поверхности, оксиды 
железа используются в качестве магнитных запи-
сывающих устройств, адсорбентов для удаления 
различных экотоксикантов, в качестве химиче-
ских и биосенсоров, векторов для направленной 
доставки, а также в иммунодиагностике [6, 7].

Для получения железосодержащих наноча-
стиц применяют физические и химические мето-
ды синтеза. К химическим методам можно отне-
сти гидротермальный, термическое разложение 

металлосодержащих соединений, химическое 
соосаждение солей металлов, золь-гель синтез 
и др. [8–10]. Наиболее распространенным мето-
дом синтеза наночастиц оксидов железа является 
химическое соосаждение, это может быть связа-
но с его простотой, высокой производительно-
стью и возможностью проводить процесс при 
низких температурах [2, 11]. Однако при синтезе 
частицы магнетита легко окисляются, что мо-
жет приводить к появлению маггемита, а также 
агломерируются вследствие большой удельной 
поверхности [12, 13]. 

Направленное модифицирование железо-
содержащих наночастиц различными соеди-
нениями позволяет повысить их агрегативную 
устойчивость и придать им определенные функ-
циональные свойства, в том числе сорбционные 
по отношению к ионам металлов и органиче-
ским токсикантам. В качестве стабилизаторов 
железосодержащих частиц могут быть использо-
ваны глинистые минералы, мезопористый крем-
незем, углеродные материалы и т.д. Углеродные 
материалы, такие как активированный уголь, 
биоуголь, углеродные нанотрубки, графен, 
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широко применяются в сорбционных техно-
логиях для удаления загрязняющих веществ из 
газовых и жидких сред [14, 15]. Согласно лите-
ратурным данным, наиболее эффективными 
адсорбентами являются недорогие, произведен-
ные из возобновляемого сырья активированные 
угли [16, 17]. 

Березовый активированный уголь (БАУ), по-
лученный из экологически чистого сырья, обла-
дает высокой удельной поверхностью (большой 
внутренней поверхностью и относительно не-
большой внешней поверхностью). Поглощаю-
щая способность БАУ частично зависит от соот-
ветствия размера пор размеру адсорбированных 
молекул. Поэтому при адсорбции существенную 
роль играют диффузионные явления внутри пор 
[18]. Активированный уголь может применяться 
для очистки сточных вод, содержащих различ-
ные виды загрязняющих веществ, в том числе 
антибиотиков [19]. Однако одним из недостат-
ков использования такого адсорбента является 
сложность удаления материала после его ис-
пользования в процессе очистки жидких сред.

В литературе представлены публикации, по-
священные получению магнитных железосодер-
жащих композитов на основе активированных 
углей, которые являются эффективными ад-
сорбентами органических соединений, в част-
ности фармацевтических препаратов [20, 21]. 
Применение магнетизированных композици-
онных материалов позволяет не только расши-
рить диапазон извлекаемых фармацевтических 
экотоксикантов из растворов, но и легко вос-
станавливать адсорбенты с помощью магнитной 
сепарации. 

Тетрациклины относятся к классу антибио-
тиков, которые применяются не только в меди-
цине, но и в ветеринарии для профилактики и 
лечения многих заболеваний, а также в качестве 
стимуляторов роста животных. Тетрациклины 
обладают широким спектром действия, активны 
в отношении грамотрицательных и грамполо-
жительных бактерий [22]. Однако присутствие 
тетрациклинов в продуктах питания, водах и по-
чвах (даже в очень низких концентрациях) пред-
ставляет значительный риск для экосистем и здо-
ровья человека, вызывая аллергические реакции 
и рост микроорганизмов, устойчивых к анти-
биотикам [23]. Поэтому необходимы исследова-
ния по поиску новых сорбционных материалов, 
позволяющих концентрировать тетрациклины 
из различных объектов. В этом плане представ-
ляют интерес сорбенты с микро- и мезопористой 
структурой, различным зарядовым типом.

Целью настоящей работы является получение 
композита активированный уголь/оксид железа, 
изучение его гранулометрического состава, мор-
фологии и кристаллической структуры. Впервые 
исследовано влияние соотношения компонентов 
композита на сорбционные свойства по отноше-
нию к лекарственному соединению тетрациклину.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Объектами исследования служили гранули-

рованный активированный уголь марки БАУ-А 
(ГОСТ 6217-74), оксид железа и композици-
онные материалы, содержащие уголь и оксид 
железа в двух разных соотношениях. Адсорб-
ционные свойства перечисленных порошков 
изучали по отношению к антибиотику широко-
го спектра действия – тетрациклину C22H24N2O8 
(4-диметиламино-1,4,4α,5,5α,6,11,12α-октаги-
дро-3,6,10,12,12α-пентаокси-6-метил-1,11-дике-
тонафтацен-2-карбоксамид).

Для уменьшения размеров частиц и увеличе-
ния площади поверхности перед приготовлени-
ем магнитных композитов уголь дополнительно 
механоактивировали в ролико-кольцевой ви-
бромельнице VM-4 (Чехия) с частотой колебаний 
930 мин–1 и энергонапряженностью 5.4 кВт/кг.  
Время активации – 15 мин. Порошки уголь/
оксид железа с различным соотношением ком-
понентов (80/20 и 20/80 мас. %) были получены 
методом химического соосаждения солей железа 
на поверхности угля. Для этого навески механо-
активированного угля (6.016 г и 0.376 г) диспер-
гировали в 100 мл водного раствора гексагидрата 
хлорида железа FeCl3 · 6H2O (1.004 г) и тетраги-
драта хлорида железа FeCl2 · 4H2O (0.5 г) в тече-
ние 1.5 ч в условиях интенсивного перемешива-
ния и воздействия ультразвука. Для осаждения 
железосодержащих частиц по каплям добав-
ляли водный раствор аммиака. Затем частицы 
магнетизированного угля отделяли с помощью 
внешнего поля, трижды промывали дистилли-
рованной водой до нейтрального значения pH и 
высушивали в вакууме при 70°С до сухого остат-
ка. Полученные композиты уголь/оксид желе-
за представляли собой порошки черного цвета. 
Синтез оксида железа проводили аналогичным 
способом, но без использования угля. Образ-
цы синтезированных композитов с массовы-
ми соотношениями компонентов 20/80 и 80/20 
обозначены в тексте как БАУ/FexOy-20/80 и  
БАУ/FexOy-80/20 соответственно. 

Размер частиц активированного угля, окси-
да железа и композитов определяли методом 
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лазерной дифракции на анализаторе размера 
частиц Analysette 22 Compact (Германия). С по-
мощью растрового электронного микроско-
па Quattro S (Thermo Fisher Scientific, Чехия) с 
приставкой для энергодисперсионного анализа 
были получены изображения поверхности БАУ 
и магнитных композитов.

Удельную поверхность и пористость БАУ и 
модифицированных оксидом железа образцов 
угля определяли методом низкотемператур-
ной (77 K) адсорбции-десорбции азота на га-
зовом сорбционном анализаторе NOVA 1200e 
(Quantachrome, США). Площадь поверхности, 
общий объем пор и распределение пор по раз-
мерам определяли с применением моделей BET 
(Brunauer–Emmett–Teller) и BJH (Barrett-Joyner-
Halenda) [24, 25]. 

Структуру порошков активированного угля, 
оксида железа и композитов исследовали мето-
дом дифракции рентгеновских лучей в диапазоне 
углов 2q = 15°–70° на дифрактометре Powdix 600  
(Беларусь, CuKα-излучение, l = 0.154  нм), ис-
пользование которого предусматривает моно-
хроматизацию первичного пучка и обработку 
данных с линейного многоточечного детектора 
(640 точек). В результате этого осуществляется 
фильтрация вторичного излучения, флюоресцен-
ция образца не наблюдается. Межслоевое рассто-
яние рассчитывали по формуле Брэгга [26]. 

ИК-спектры порошков БАУ, оксида железа и 
композитов уголь/оксид железа в виде таблеток 
с KBr регистрировали в диапазоне волновых чи-
сел 4000–400 см–1 на спектрометре Avatar 360 FT-
IR ESP (Thermo Nicolet, США).

Адсорбционные свойства синтезированных 
материалов исследовали по отношению к тетра-
циклину C22H24N2O8 в статических условиях при 
комнатной температуре и pH 7 раствора. Для 
этих целей навески сорбента (m = 0.05 г) поме-
щали в колбы с водным раствором антибиотика 
(V = 5 мл) с заданными начальными концентра-
циями 0.403 × 10–4 и 1.025 × 10–4 моль/л. Фазы 
выдерживали в контакте определенные проме-
жутки времени (t, мин). Затем их разделяли филь-
трованием и магнитом и в водной фазе опреде-
ляли остаточную концентрацию тетрациклина 
методом спектрофотометрии с использованием 
UV-Vis спектрофотометра U-2001 (Hitachi, Япо-
ния). Величина коэффициента экстинкции была 
определена по угловому коэффициенту экспе-
риментальной зависимости величины поглоще-
ния от концентрации антибиотика и составила 
4.38 × 10–4 л/(моль см).

Количество адсорбированного тетрацикли-
на (А) рассчитывали по формуле:

	 A
C C V

m
t=

-( )0 ,	  (1)

где C0 и Ct – начальная и остаточная концентра-
ция антибиотика в растворе, моль/л.

Степень извлечения (α) определяли после до-
стижения адсорбционного равновесия из соот-
ношения:

	 a = -( ) ×1 1000С Сeq / %,	 (2)

где Ceq – равновесная концентрация тетрацикли-
на, моль/л.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
На рис. 1 представлено распределение частиц 

по размерам для активированного угля, оксида 
железа и композитов на их основе. Обнаружено, 
что уголь после измельчения в вибромельнице в 
течение 15 мин содержит частицы размером от 
0.3 до 25 мкм с максимумом распределения при 
5 мкм, у оксида железа размер частиц колеблется 
от 0.3 до 90 мкм с максимумом при 25 мкм. Ком-
позит БАУ/FexOy-20/80 имеет размеры частиц 
от 0.3 до 60 мкм с максимумом при 20 мкм. Для 
композита БАУ/FexOy-80/20 характерно наличие 
более мелких частиц с размером от 0.3 до 40 мкм 
и максимумом при 10 мкм. С учетом упомянутых 
во Введении работ [12, 13] необходимо уточнить, 
что полученные данные описывают распределе-
ние агломератов железосодержащих частиц.

На рис. 2 приведены электронные изобра
жения поверхности БАУ, оксида железа и 
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Рис. 1. Распределение частиц по размерам для образцов исследу-
емых материалов: 1 – БАУ; 2 – FexOy; 3 – БАУ/FexOy-20/80; 
4 – БАУ/FexOy-80/20.
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магнетизированного угля, полученные методом 
РЭМ. На рассмотренном участке поверхности 
образец угля содержит атомы С и О; наблюдаются 
кристаллоподобные частицы различных размеров 
неправильной формы (рис. 2а). Представленные 
данные согласуются с результатами грануломе-
трии (рис. 1, кривая 1). Из рис. 2б видно, что полу-
ченные частицы оксида железа имеют склонность 
к агломерации. Композиты уголь/оксид железа 
представляют собой агрегаты частиц различной 
морфологии с включениями FexOy (рис. 2в, 2г). 
Проведенный анализ продемонстрировал изме-
нение количества железа при изменении соотно-
шения компонентов композита. Так, если для по-
рошка БАУ/FexOy-80/20 концентрация атомов Fe 
составляла 5.2%, то для БАУ/FexOy-20/80 – 20.5% 
от общего состава материала. Эти различия на-
глядно иллюстрируют и РЭМ-карты. По-види-
мому, частицы FexOy осаждаются на поверхности 
активированного угля (рис. 2в, 2г). Кроме того, на 
картированных РЭМ-снимках можно видеть ло-
кализацию атомов других химических элементов, 
входящих в состав угля, оксида железа и компо-
зитов уголь/оксид железа. Отметим, что наличие 
Cl в случае порошков, содержащих оксид железа 

(рис. 2б–2г), обусловлено особенностями синтеза 
этих материалов.

Как известно из литературы [27, 28], акти-
вированный уголь и оксид железа сильно раз-
личаются по количественным характеристикам 
пористой структуры: для угля удельная поверх-
ность пор многократно превосходит таковую для 
FexOy. Поэтому определенный интерес представ-
ляют данные о значениях текстурных параме-
тров бинарных композитов уголь/оксид железа в 
зависимости от соотношения компонентов.

Для этих целей на образцах БАУ, оксида желе-
за и композитов уголь/оксид железа были прове-
дены исследования низкотемпературной (77 K) 
адсорбции-десорбции азота (рис. 3). Из рисунка 
видно, для всех синтезированных материалов 
на изотермах наблюдаются петли гистерезиса в 
области больших относительных давлений  
(P/P0 > 0.5), что свидетельствует о капилляр-
ной конденсации азота в мезопорах. При малых 
давлениях (P/P0 < 0.5) изотермы обратимы либо 
почти обратимы (для оксида железа). Такой вид 
изотерм соответствует IV типу по классифика-
ции IUPAC и характерен для образцов, имею-
щих мезопористую структуру.

(а) (б)

(в) (г)

4 мкм 4 мкм

4 мкм 4 мкм

С Сl FeO

С Сl FeO С СlFeO

С O

Рис. 2. Электронные микрофотографии образцов: а – БАУ; б – FexOy; в – БАУ/FexOy-80/20; г – БАУ/FexOy-20/80.
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Распределение пор по размерам для БАУ, 
FexOy, БАУ/FexOy-20/80 и БАУ/FexOy-80/20, рас-
считанное по экспериментальным данным с ис-
пользованием модели BJH, показано на встав-
ках к рис. 3а–3г. Эти данные подтверждают, что 
синтезированные порошки представляют собой 
мезопористые материалы. 

Образцы БАУ и композитов имеют узкое рас-
пределение с максимумом около 4 нм. Для окси-
да железа наблюдается более широкий диапазон 
размеров пор с максимумом около 9 нм.

В табл. 1 приведена площадь удельной по-
верхности S

BET
, полный объем пор V

T
, средний 

диаметр пор Dav, а также наиболее вероятный 
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Рис. 3. Изотермы сорбции-десорбции азота и распределение пор по размерам (на вставках) для образцов БАУ (а), 
FexOy (б), композитов БАУ/FexOy-80/20 (в) и БАУ/FexOy-20/80 (г).

Таблица 1. Количественные характеристики пористости синтезированных материалов

Образец SBET, м2/г Dprob, нм Dav, нм VT, см3/г

БАУ 869 4 3 0.21

Fe3O4 55 9 11 0.15

БАУ/FexOy-20/80 401 4 4 018

БАУ/FexOy-80/20 1009 4 3 0.22
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диаметр пор Dprob, соответствующий максимуму 
распределения по размерам. Из данных табл. 1 
видно, при переходе от БАУ к композиту, содер-
жащему 20% БАУ, удельная поверхность умень-
шается более чем в 2 раза (от 869 до 401 м2/г). 
Однако для композита с 80% угля наблюдает-
ся увеличение удельной поверхности пор (до 
1009 м2/г), при этом суммарный объем порового 
пространства практически совпадает с таковым 
для образца БАУ. 

На рис. 4 представлены дифрактограммы 
БАУ, оксида железа и синтезированных компо-
зитов уголь/оксид железа. На рентгенограмме 
БАУ (кривая 1) присутствуют два широких гало, 
что свидетельствует об аморфной структуре это-
го материала. Пик, наблюдаемый при 2θ = 24.5°, 
соответствует плоскости (002) в кристаллах гра-
фита, рефлекс при 2θ = 43° характерен для пло-
скостей (101), составляющих структуру угля [27]. 
Отметим, что в работе [29] получен аналогичный 
спектр.

Дифрактограмма оксида железа (рис. 4, кри-
вая 2) содержит пики при 2θ = 30.27°, 35.5°, 
43.4°, 57.3° и 62.9°, отвечающие плоскостям 
(220), (311), (400), (511) и (440) соответственно 
(JCPDS 19-0629). При этом наиболее интенсив-
ный рефлекс наблюдается при 2θ = 35.5°, что со-
ответствует положению основной линии фазы 
оксида железа [28].

Рентгенограмма композита БАУ/FexOy-80/20 
(рис. 4, кривая 3) содержит широкие рефлек-
сы при 2θ = 25.1° и 43.42°, отвечающие аморф-
ной структуре угля, и небольшой пик в области 

2θ = 35.6°, характерный для оксида железа. На 
дифрактограмме композита БАУ/FexOy-20/80 
(рис. 4, кривая 4) присутствуют характеристи-
ческие пики оксида железа, соответствующие 
упомянутым плоскостям с индексами Милле-
ра (220), (311), (440), (511) и (440). Отметим, что 
межплоскостное расстояние, рассчитанное по 
рефлексу (311), составляет 0.251 нм для FexOy и 
0.253 нм для композитов. Кроме того, сохраняет-
ся аморфное гало в интервале углов 15°–30° (2θ). 

На рис. 5 приведены ИК-спектры порошков 
активированного угля, оксида железа и компо-
зитов уголь/оксид железа с массовыми соотно-
шениями компонентов 80 : 20 и 20 : 80. В спек-
тре БАУ (спектр 1) наблюдается широкая полоса 
поглощения с максимумом при 3430 см–1, отве-
чающая валентным колебаниям гидроксильных 
групп. Две узкие полосы при 2925 и 2856 см–1 со-
ответствуют валентным колебаниям групп –СН2 
и –СН3 соответственно. Полоса при 1641 см–1  
относится к деформационным колебаниям ад-
сорбированных молекул Н2О. Полоса погло-
щения при 1402 см–1 может быть связана с сим-
метричными колебаниями групп СОО–, полоса 
при 1092 см–1 – с колебаниями связи C–O [20]. 

В ИК-спектре оксида железа (рис. 5, спектр 2) 
присутствует характеристическая полоса погло-
щения при 534 см–1, обусловленная валентными 
колебаниями связей Fe–O–Fe [30–32]. Полосы 
поглощения с пиками при 3700, 3620 и 1638 см–1 
отвечают валентным колебаниям функциональ-
ных групп ОН и деформационному колебанию 
молекул воды [33]. 
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Рис. 4. Дифрактограммы образцов: 1 – БАУ; 2 – FexOy;  
3 – БАУ/FexOy-80/20; 4 – БАУ/FexOy-20/80.
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Рис. 5. ИК-спектры образцов: 1 – БАУ; 2 – FexOy; 3 –  
БАУ/FexOy-80/20; 4 – БАУ/FexOy-20/80.
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В ИК-спектрах полученных композитов 
уголь/оксид железа (рис. 5, спектры 3 и 4) на-
блюдаются широкие полосы в области 3300–
3500 см–1, соответствующие валентным колеба-
ниям –OH-групп, а также появляются полосы, 
связанные с деформационными колебаниями 
–СОО-групп (1360 см–1) [20]. В спектре компо-
зита БАУ/FexOy-80/20 присутствует слабая по-
лоса при 501 см–1, которая, по-видимому, также 
обусловлена колебаниями связей Fe–O. Харак-
теристическая полоса поглощения в спектре 
композита БАУ/FexOy-20/80 при 570 см–1 соот-
ветствует деформационным колебаниям Fe–O 
и свидетельствует о присутствии оксида железа в 
структуре композита [34]. 

На рис. 6–8 представлены кинетические кри-
вые извлечения тетрациклина полученными 

материалами на основе БАУ и оксида железа из 
растворов с различной начальной концентра-
цией антибиотика. Эти кривые характеризуют 
накопление лекарственного препарата в фазе 
адсорбента во времени. Видно, что независимо 
от значения C0 эффективность сорбции увели-
чивается в ряду FexOy < БАУ < БАУ/FexOy-20/80 < 
< БАУ/FexOy-80/20, т.е. двухкомпонентный ком-
позиционный материал является более эффек-
тивным адсорбентом, чем индивидуальные БАУ 
и оксид железа. Наибольшая степень извлечения 
тетрациклина (>96%) достигается при использо-
вании композита БАУ/FexOy-80/20 (табл. 2 и 3).

Следует отметить, что время достижения ад-
сорбционного равновесия практически для всех 
исследованных условий (природа адсорбента, 
начальная концентрация лекарства) достаточно 
велико. Минимальное значение (τeq < 300 мин) 
наблюдается для сорбции на оксид железа при 
С0 = 0.403 × 10–4 моль/л (табл. 2). 

Начальная концентрация тетрациклина в 
растворе влияет на основные кинетические по-
казатели адсорбционного процесса. Как следует 
из сопоставления данных, приведенных в табл. 2 
и 3, чем больше величина С0, тем продолжитель-
нее время достижения адсорбционного равнове-
сия и выше концентрация лекарства в твердой 
фазе.

Для количественного описания кинетики в 
гетерогенной системе нужно определить поря-
док реакции и уравнение, по которому можно 
рассчитать константу скорости сорбционного 
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Рис. 6. Кинетические кривые сорбции тетрациклина  
(С0 = 0.403 × 10–6 моль/л) на образцах: 1 – FexOy; 2 – БАУ; 
3 – БАУ/FexOy-20/80; 4 – БАУ/FexOy-80/20.
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Рис. 7. Кинетические кривые сорбции тетрациклина  
(С0 = 1.025 × 10–6 моль/л) на образцах: 1 – FexOy; 2 – БАУ; 
3 – БАУ/FexOy-20/80; 4 – БАУ/FexOy-80/20.

0

0

20

40

80

60

100

1000 2000 3000

A 
×

 1
04  м

мо
ль

/г

t, мин

23

1 (R2 = 0.983)
2 (R2 = 0.995)
3 (R2 = 0.894)

1

Рис. 8. Кинетика адсорбции тетрациклина на композите 
БАУ/FexOy-80/20 при С0 = 1.025 × 10–6 моль/л. Представлены 
экспериментальные данные (■) и различные фитирующие 
кривые: 1 – кинетическая модель псевдопервого порядка; 
2 – кинетическая модель псевдовторого порядка; 3 – диф-
фузионная модель.
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процесса. Для этих целей в настоящей работе 
экспериментальные данные по адсорбции тетра-
циклина были обработаны с помощью моделей 
реакций псевдопервого порядка, псевдовторого 
порядка и диффузионной модели [35–37], кото-
рым отвечают уравнения (3), (4) и (5) соответ-
ственно:

	 A A eeq
k t= -





-1 1 ,	  (3)

	 A
k A t

k A t
eq

eq
=

+
2

2

21
,	  (4)

	 A k t gd= + ,	  (5)

где Aeq – равновесная концентрация сорбиро-
ванных ионов; k1 и k2 – кинетические констан-
ты для реакций псевдопервого и псевдовторого 

Таблица 2. Количественные параметры кинетики сорбции тетрациклина на синтезированных материалах 
(С0 = 0.403 × 10–4 моль/л)

Параметр БАУ БАУ/FexOy-20/80 БАУ/FexOy-80/20 FexOy

teq, мин 1000 2000 2000 <300

α, % 67.25 84.86 98.26 51.36
Модель псевдопервого порядка

Aeq × 104, ммоль/г 24.471 32.703 37.349 20.233

k1, мин–1 0.052 0.020 0.025 0.049

R2 0.939 0.985 0.975 0.982
Модель псевдовторого порядка

Aeq × 104, ммоль/г 26.112 33.467 38.412 21.361

k2, г/(ммоль мин) 27.413 8.435 9.031 33.472

R2 0.971 0.990 0.961 0.971
Диффузионная модель

kd × 104, ммоль/(г мин0.5) 15.846 13.765 16.694 13.408

g × 104, ммоль/г 0.222 0.376 0.415 0.155
R2 0.483 0.790 0.628 0.316

Таблица 3. Количественные параметры кинетики сорбции тетрациклина на синтезированных материалах 
(С0 = 1.025 × 10–4 моль/л)

Параметр БАУ БАУ/FexOy-20/80 БАУ/FexOy-80/20 FexOy

teq, мин 3000 3000 3000 3000

α, % 68.0 86.44 96.18 57.17
Модель псевдопервого порядка

Aeq × 104, ммоль/г 62.482 84.194 93.243 53.775

k1, мин–1 0.005 0.004 0.005 0.005

R2 0.960 0.988 0.983 0.971
Модель псевдовторого порядка

Aeq × 104, ммоль/г 68.194 92.311 100.367 58.483

k2, г/(ммоль мин) 0.840 0.545 0.687 1.014

R2 0.977 0.995 0.995 0.987
Диффузионная модель

kd × 104, ммоль/(г мин0.5) 9.514 10.597 17.264 7.947
g × 104, ммоль/г 1.115 1.521 1.591 0.963

R2 0.927 0.913 0.894 0.913
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порядка соответственно; kd – константа скоро-
сти диффузии; g – величина, зависящая от тол-
щины пограничного слоя. 

Величины Aeq, k1, k2, kd и g, входящие в урав-
нения (3)–(5), а также значения коэффициента 
детерминации (R2) были рассчитаны с использо-
ванием программного пакета OriginPro 7.0. При-
мер использования фитирующих моделей для 
наглядности представлен на рис. 8. Полученные 
значения перечисленных параметров приведе-
ны в табл. 2 и 3.

Видно, что кинетические модели реакций 
псевдопервого и псевдовторого порядка хоро-
шо описывают экспериментальные данные:  
R2 > 0.95 почти во всех случаях, за исключени-
ем сорбции на БАУ при С0 = 0.403 × 10–4 моль/л, 
тогда как для диффузионной модели значения 
коэффициентов детерминации значительно 
ниже. Отметим, однако, что в случае растворов 
с более высокой начальной концентрацией те-
трациклина (С0 = 1.025 × 10–4 моль/л) значения 
R2 возрастают. Это может свидетельствовать об 
увеличении роли диффузионных ограничений 
для сорбционного процесса, что, по-видимому, 
проявляется в весьма продолжительном пери-
оде установления адсорбционного равновесия 
(3000 мин).

Таким образом, проведенные исследования 
показали, что процесс извлечения тетрацикли-
на из водных растворов изученными сорбентами 
контролируется скоростью собственно адсор-
бции. Согласно [38], можно предположить, что 
в исследованных условиях адсорбция вызвана 
электростатическим взаимодействием между 
отрицательно заряженной поверхностью маг-
нитного сорбента и молекулами тетрациклина. 

Однако использование кинетических моделей 
для математической обработки данных не 
позволило ответить на вопрос, какая из моделей 
является предпочтительной для математического 
описания сорбционного процесса.

В целом анализ экспериментальных данных 
в сочетании с математическим моделированием 
позволяет заключить, что среди исследованных 
материалов оптимальным является композит 
БАУ/FexOy-80/20. 

В табл. 4 приведены литературные данные по 
адсорбции тетрациклина на биоуглях различно-
го происхождения. Из таблицы видно, что ре-
зультаты, полученные в настоящей работе, со-
поставимы с представленными в публикациях. 
Кроме того, сделанный нами вывод о том, что 
модифицирование угля частицами оксида желе-
за способствует увеличению адсорбции, согласу-
ется с данными [39]. 

Исследованный в работе березовый активи-
рованный уголь является дешевым и экологиче-
ски чистым сырьем и производится многотон-
нажно. Поэтому композиционные материалы 
на его основе имеют широкие перспективы при-
менения в качестве адсорбентов для извлечения 
лекарственных препаратов, таких как тетра-
циклин, из водных сред.

ЗАКЛЮЧЕНИЕ
В представленной работе методом химиче-

ского соосаждения были получены порошко-
вые композиционные материалы на основе 
активированного угля и оксида железа. Синте-
зированные порошки были охарактеризованы 
рядом физико-химических методов. На основа-
нии проведенных исследований сорбционных 

Таблица 4. Литературные данные о сорбционной способности различных биоуглей по отношению к тетра-
циклину 

Сорбент C0, мг/л m/V, г/л A, мг/г Литература
Биоуголь на основе рисовой 
соломы 50 1.2 14 [39]

Биоуголь на основе 
магнетизированной рисовой 
соломы

50 1.2 28–35 [39]

Биоуголь на основе пищевых 
отходов 20 50 2.98 [40]

Зола рисовой шелухи 20 2 3.41 [41]
БАУ 17.9* 10 0.92* Наст. работа

БАУ/ FexOy-80/20 17.9 * 10 1.76* Наст. работа

*Начальная концентрация тетрациклина в растворе (С0) и концентрация сорбированного лекарства в твердой фазе (A) для 
удобства сравнения пересчитаны на мг/л и мг/г соответственно.
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свойств изученных образцов установлено, что 
наибольшая степень извлечения тетрациклина 
(>96%) достигается при использовании ком-
позита БАУ/FexOy-80/20. Это свидетельствует о 
том, что при модификации БАУ оксидом желе-
за получаются композиты с сорбционной емко-
стью, превышающей аналогичные значения для 
компонентов (синергетический эффект). По-
лученные данные могут быть полезны при раз-
работке эффективных сорбентов для решения 
экологических проблем, в медицине, фармацев-
тике, при очистке сточных вод. 
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Powders containing activated carbon (BAC) and iron oxide (FexOy) with different component ratios (80/20 and 
20/80 wt. %) were synthesized by chemical co-precipitation of iron salts in the pores and on the surface of 
the carbon. To assess the morphology, texture and structure of the composites, laser diffraction, scanning elec-
tron microscopy, low-temperature adsorption-desorption of nitrogen vapor, and X-ray diffraction were used. 
It was revealed that the synthesized powders are mesoporous materials with a small contribution of macrop-
ores. The sorption properties of coal, iron oxide and iron-containing composites in relation to the drug com-
pound tetracycline were studied. It was found that the sorption efficiency of antibiotic increases in the order 
Fe3O4 < BAC < BAC/FexOy-20/80 < BAC/FexOy-80/20. The kinetics of tetracycline adsorption on the powders 
under study was described by equations of pseudo-first and pseudo-second order reactions.
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