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Гексаалюминаты РЗЭ-магния со структурой магнетоплюмбита рассматриваются в качестве потенци-
альных кандидатов на роль термобарьерных покрытий. Однако синтез однофазных образцов сопряжен 
с определенными трудностями. В настоящей работе сопоставлены особенности получения PrMgAl11O19 
методами осаждения и цитратного золь-гель синтеза. По результатам термического анализа прекур-
соров проведен постадийный отжиг образцов с последующим рентгенофазовым анализом продукта. 
Показано, что оптимальным условием получения однофазного гексаалюмината PrMgAl11O19 является 
длительный отжиг таблетированных прекурсоров, полученных золь-гель методом, при температу-
ре 1600°C. Термодинамическая оценка возможных реакций образования гексаалюмината празеоди-
ма-магния из оксидов подтвердила разложение PrMgAl11O19 при температурах >1700°C.
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ВВЕДЕНИЕ
В настоящее время основным материалом для 

термобарьерных покрытий (TБП) является ста-
билизированный иттрием диоксид циркония. 
Однако температурный интервал его применения 
ограничивается 1200°C за счет протекания фазо-
вого перехода из моноклинной структуры в тетра-
гональную модификацию [1–4]. Последние 30 лет 
ведется активный поиск новых материалов –  
кандидатов для ТБП – для улучшения произво-
дительности и эффективности работы газовых 
турбин различного назначения [5–8]. В качестве 
новых материалов для термобарьерных покрытий 
рассматриваются соединения со структурой магне-
топлюмбита состава LnMAl11O19 (Ln = La–Gd,  
Ca, Sr; M = Mg, Zn, Cu, Mn) [9, 10], которые ха-
рактеризуются низкой теплопроводностью и вы-
сокой термической устойчивостью [11–14]. 

Допирование гексаалюмината LaMgAl11O19 
ионами Tm3+ и Dy3+ позволяет получать люми-
нофорные материалы, цвет излучения которых 
меняется от голубого до белого в зависимости 
от длины волны возбуждения, что наряду с хо-
рошей термической стабильностью указывает на 
возможность использования LaMgAl11O19:Tm3+, 

Dy3+ в белых светодиодах, возбуждаемых ультра-
фиолетовым светодиодом на основе GaN [15, 16]. 
В последнее время также ведутся разработки ма-
териалов на основе гексаалюминатов с целью их 
применения в гетерогенном катализе для таких 
процессов, как каталитическое сжигание CH4, 
частичное окисление и CO2-риформинг CH4 в 
синтез-газ, а также разложение N2O [17]. 

Одним из наиболее распространенных спосо-
бов получения гексаалюминатов является твер-
дофазный метод синтеза [12, 14–16, 18]. Однако 
для получения однофазного продукта, как пра-
вило, необходимо проведение промежуточных 
стадий синтеза, направленных на ускорение ре-
акции, таких как механоактивация, плазменное 
распыление и прессование, в том числе горячее 
прессование. Добиться лучшей гомогенизации 
реагентов можно также путем проведения син-
теза в две стадии. На первой стадии из растворов 
солей металлов методом соосаждения [13, 19] 
или золь-гель методом [9, 11, 20] получают пре-
курсоры, которые затем подвергают термиче-
ской обработке. 

В настоящей работе выполнен сравнитель-
ный анализ двух растворных методов получения 
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гексаалюмината празеодима-магния PrMgAl11O19 
с целью установления оптимальных параметров 
синтеза однофазных образцов со структурой 
магнетоплюмбита. 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Для синтеза гексаалюмината состава PrMgAl11O19 

использовали кристаллогидраты нитратов пра-
зеодима (Pr(NO3)3 · 6H2O), алюминия (Al(NO3)3 ·  
· 9H2O) и магния (Mg(NO3)2 · 6H2O), которые 
смешивали в стехиометрическом соотношении 
(Pr : Mg : Al = 1 : 1 : 11) и растворяли в дистилли-
рованной воде.

Для синтеза методом обратного осаждения 
приготовленный раствор нитратов по каплям 
добавляли при перемешивании к избытку рас-
твора аммиака. Выпавший осадок отстаивали, 
промывали дистиллированной водой и отделяли 
на центрифуге, затем помещали в сушильный 
шкаф (t = 90°C) на 72 ч. Высушенный прекурсор 
тщательно растирали и последовательно отжи-
гали при температурах 600, 1000, 1300, 1400, 1500, 
1600 и 1700°C.

Синтез PrMgAl11O19 золь-гель методом прово-
дили с использованием лимонной кислоты, ко-
торую добавляли в раствор нитратов в избытке 
по сравнению с общим количеством металлов 
ν(C6H8O7) : ∑νM = 1.2 : 1. Полученный раствор 
упаривали до состояния желтого густого геля при 
температуре 80°C. Полученный гель выдержива-
ли в сушильном шкафу при 115°С в течение 16 ч. 
В итоге сформировалась бледно-зеленая твердая 

воздушная масса. Отжиг промежуточного про-
дукта проводили при температурах 1000 и 1500°С 
в течение 24 ч на каждой стадии, затем образцы 
прессовали в таблетки диаметром 15 мм. Даль-
нейший отжиг проводили при температурах 
1600 и 1700°C в течение 6 и 4 ч соответственно. 

Фазовый состав синтезированных образцов 
определяли методом рентгенофазового ана-
лиза (РФА) с помощью дифрактометра Bruker 
D8 Advance (CuKα-излучение, λ = 1.5418 Å,  
Ni-фильтр, детектор LYNXEYE, геометрия на 
отражение) в интервале углов 2θ = 10°–60°. Ре-
зультаты исследования обрабатывали с помо-
щью программного обеспечения Bruker EVA с 
использованием базы данных ICDD PDF-2.

Морфологию образца и его чистоту иссле-
довали с помощью электронного микроско-
па TescanAmber при ускоряющем напряжении 
5 кэВ с использованием детектора LE BSE. 

Термическое поведение прекурсоров иссле-
довали на синхронном термическом анализато-
ре STA 449 F1 Jupiter фирмы Netzsch-Gerätebau 
GmbH. Измерения проводили в платинородие-
вых тиглях с крышкой в инертной атмосфере со 
скоростью 10 град/мин. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изучение прекурсора,  
полученного методом осаждения

На термограмме прекурсора, полученно-
го методом осаждения (рис. 1), присутствует 
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Рис. 1. Температурные зависимости теплового потока и изменения массы прекурсора PrMgAl11O19, 
полученного методом осаждения.
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широкий комплексный эндоэффект в интервале 
температур 92–526°С, который сопровождает-
ся значительной потерей массы образца и обу-
словлен, по-видимому, десорбцией физически 
связанной воды, разложением гидроксидов и 
оксогидроксидов. Далее в области 700–900°С 
наблюдается широкий экзоэффект, связанный, 
вероятно, с кристаллизацией промежуточных 
фаз. Несколько неожиданным является эндо-
эффект с максимумом при 1215°С, сопрово-
ждаемый небольшой потерей массы, поскольку 
известно, что в этом температурном интервале 
происходит экзотермический фазовый переход 
метастабильных фаз оксида алюминия (γ-Al2O3, 
θ-Al2O3) в устойчивую a-модификацию [21, 22]. 
Этот эффект отчетливо виден на опубликован-
ной ранее термограмме LaMgAl11O19 [23], однако 
в случае PrMgAl11O19 он полностью перекрыва-
ется эндоэффектом, отвечающим выделению 
остаточных гидроксильных групп. 

Для уточнения превращений, происходящих 
в процессе синтеза, прекурсор PrMgAl11O19 от-
жигали при различных температурах и изуча-
ли методом рентгенофазового анализа (рис. 2). 
Образец PrMgAl11O19, отожженный при 600°C, 
является рентгеноаморфным. На дифракто-
грамме образца, полученного после отжига при 
1000°C (рис. 2, кривая 2), присутствуют хорошо 

разрешенные рефлексы фазы PrAlO3 со структу-
рой перовскита и размытые рефлексы, которые 
могут быть отнесены как к алюминату магния со 
структурой шпинели, так и к γ-Al2O3 со структу-
рой дефектной шпинели. В образце также при-
сутствует небольшое количество смешанного 
оксида празеодима (Pr6O11).

На дифрактограмме образца, отожженного 
при 1300°C (рис. 2, кривая 3), появляются реф-
лексы основной фазы – тройного оксида со 
структурой магнетоплюмбита. В образце так-
же присутствуют двойные алюминаты магния и 
празеодима в качестве примесных фаз. Нагрева-
ние образца до 1400°C приводит к росту содер-
жания PrMgAl11O19 в образце до 80%. Дальней-
шее увеличение температуры отжига до 1500 и 
1600°C приводит к повышению кристаллично-
сти всех фаз, при этом наблюдается уменьше-
ние доли фазы перовскита и увеличение коли-
чества MgAl2O4. При повышении температуры 
прокаливания образцов до 1700°C происходит 
полное разрушение гексаалюмината на корунд 
(α-Al2O3), PrAlO3 и MgAl2O4 (рис. 2, кривая 7).

Анализ литературы показал, что метод осаж-
дения ранее был применен лишь для получения 
гексаалюмината лантана-магния [13, 19]. Од-
нофазный LaMgAl11O19 был получен спеканием 
таблетированного образца при 1500°C в течение 
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Рис. 2. Дифрактограммы прекурсора PrMgAl11O19, полученного методом осаждения и отожжен-
ного при 600 (1), 1000 (2), 1300 (3), 1400 (4), 1500 (5), 1600 (6) и 1700°C (7). P – PrAlO3 (перовскит),  
S – MgAl2O4 (шпинель), С – a-Al2O3 (корунд), O – Pr6O11, γ – γ-Al2O3. Необозначенные пики относятся к 
фазе PrMgAl11O19 со структурой магнетоплюмбита.



175ОСОБЕННОСТИ СИНТЕЗА ГЕКСААЛЮМИНАТА ПРАЗЕОДИМА-МАГНИЯ

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ  том 70  № 2  2025

6 ч, а дальнейший отжиг образцов при темпе-
ратуре 1700°C приводил к частичному разложе-
нию LaMgAl11O19 и выделению фазы корунда. 
При попытке замещения лантана на неодим и 
диспрозий наблюдалась схожая картина. Диф-
рактограммы некоторых образцов, отожженных 
при температуре 1700°C, содержали рефлексы 
примесных фаз (α-Al2O3 и др.) [13, 19]. Таким об-
разом, на основании полученных нами резуль-
татов и литературных данных можно заключить, 
что при синтезе гексаалюминатов LnMgAl11O19 
(Ln = La, Pr) методом осаждения отжиг пре-
курсоров следует проводить при температуре не 
выше 1600°C. 

Изучение прекурсора,  
полученного золь-гель методом

При нагревании прекурсора, полученного 
золь-гель методом и высушенного при 115°С, 
происходит постепенное уменьшение массы об-
разца, которое можно связать с изменениями в 
органической составляющей смеси и ее частич-
ным разложением. На термограмме образца в 
этом температурном интервале наблюдается на-
чало эндотермического эффекта (рис. 3), кото-
рый прерывается высоким узким экзоэффектом. 
При 190–210°С происходит быстрое сгорание 
цитратов металлов с выделением значительно-
го количества тепла и образованием большого 

объема газообразных продуктов. Удаление 
оставшихся продуктов горения органической 
смеси продолжается до 600°С. Суммарная поте-
ря массы прекурсора составляет 75.27 мас. %. На 
кривой ДСК в интервале температур 210–1430°С 
никаких выраженных тепловых эффектов не на-
блюдается. По-видимому, несмотря на быстрое 
протекание стадии горения, в реакционной сме-
си развивается достаточно высокая температура, 
необходимая для синтеза целевого продукта. 

С учетом полученных данных предваритель-
ный отжиг прекурсора проводили при темпера-
туре 1000°С. Однако на дифрактограмме образца 
наблюдаются лишь размытые и плохо идентифи-
цируемые рефлексы (рис. 4, кривая 1), что сви-
детельствует о низкой степени кристалличности 
продуктов реакции горения. 

Дальнейший отжиг при 1500°С приводит к об-
разованию гексаалюмината празеодима-магния 
с небольшой примесью алюмината празеоди-
ма со структурой перовскита (рис. 4, кривая 2). 
При повышении температуры отжига до 1600°С 
рефлексы второй фазы (PrAlO3) становятся труд-
норазличимыми (рис. 4, кривая 3). Дальней-
шее повышение температуры отжига до 1700°С 
приводит к изменениям в составе смеси, свя-
занным с частичным разложением PrMgAl11O19.  
На дифрактограмме образца (рис. 4, кривая 4) 
помимо заметных пиков, относящихся к фазе 

0
–2

0

2

4

6
ТГ

ДСК

11.74%

37.51%

26.02%

200 400 600 800 1000 1200 1400

40

20

60

80

100

Д
С

К
, м

В
т/

м
г

ТГ
, %

t, °С

Рис. 3. Результаты термического и термогравиметрического анализа прекурсора PrMgAl11O19, получен-
ного золь-гель методом.
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перовскита, регистрируются также рефлексы 
алюмомагниевой шпинели (MgAl2O4). Можно 
предположить, что длительное выдерживание 
образца при этой температуре приводит к раз-
ложению гексаалюмината празеодима-магния 
на два двойных оксида и оксид алюминия, как 
и в случае отжига образца, полученного методом 
осаждения. 

Таким образом, оптимальным режимом по-
лучения гексаалюмината празеодима-магния 
можно считать золь-гель синтез с последующим 
высокотемпературным прокаливанием таблети-
рованного образца при 1600°С.

Исследование структуры и микроструктуры 
синтезированного PrMgAl11O19

На рис. 5 представлена дифрактограмма од-
нофазного гексаалюмината празеодима-магния. 
Анализ положения рефлексов на дифрактограм-
ме позволяет судить о принадлежности структу-
ры полученного гексаалюмината к структурно-
му типу магнетоплюмбита (пр. гр. P63/mmc). Для 
индицирования дифрактограмм были исполь-
зованы кристаллографические данные для изо-
структурных гексаалюминатов лантана-магния 
[24]. Рассчитанные кристаллографические пара-
метры a = 5.5874, c = 21.8911 Å (табл. 1) удовлет-
ворительно согласуются с литературными дан-
ными [11, 25, 26]. 

На микрофотографии PrMgAl11O19 (рис. 6) 
видно, что образец состоит из многочисленных 
гексагональных пластинчатых частиц диаметром 
от 2 до 5 мкм и толщиной 0.2–0.8 мкм, хаотич-
но связанных между собой. Такая форма частиц 
характерна для всех гесаалюминатов РЗЭ-маг-
ния, полученных золь-гель методом. Возможна 
лишь разница в размерах кристаллитов, на ко-
торые оказывает влияние температура конеч-
ного отжига. При температуре 1500°С диаметр 
гексагональных частиц не превышает 1 мкм при 
толщине 50–100 нм [11]. После прокаливания 
при 1600°С размер частиц существенно не меня-
ется (до 5 мкм), однако появляется склонность 
к образованию крупных агломератов размером 
10–20 мкм [27]. 

Термодинамическая оценка вероятности 
образования PrMgAl11O19

Сопоставляя результаты термического ана-
лиза и РФА, можно отметить, что образование 
PrMgAl11O19 происходит без какого-либо выи-
грыша в энергии. Более того, при отжиге пре-
курсора, полученного методом осаждения, об-
разование фазы гексаалюмината совпадает по 
температуре с эндоэффектом на кривой ДСК. 
Для объяснения фазовых превращений, наблю-
даемых при получении гексаалюмината празе-
одима-магния, была проведена оценка энергии 
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Рис. 4. Дифрактограммы прекурсора PrMgAl11O19, полученного золь-гель методом и отожженного при 1000 (1), 
1500 (2), 1600 (3) и 1700°C (4). P – PrAlO3 (перовскит), S – MgAl2O4 (шпинель). Необозначенные пики относятся к 
фазе PrMgAl11O19 со структурой магнетоплюмбита.
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Гиббса реакций образования PrMgAl11O19 из ок-
сидов: 

	 MgO + 0.5Pr2O3 + 5.5Al2O3 = PrMgAl11O19,	 (1)

2MgO + 0.5Pr2O3 + 6.5Al2O3 =
	  =PrMgAl11O19 + MgAl2O4,	 (2)

MgO + Pr2O3 + 6Al2O3 =
	 = PrMgAl11O19 + PrAlO3,	 (3)

MgO + Pr2O3 + 2 Al2O3 =
	 = 2PrAlO3 + MgAl2O4.	 (4)

Для расчета использовали энтальпии образо-
вания и температурные зависимости термоди-
намических функций из работ [28, 29]. Для алю-
мината празеодима PrAlO3 значение энтальпии 

Таблица 1. Кристаллографические параметры полученного нами PrMgAl11O19 в сравнении с литературными 
данными 

Кристаллографические параметры Условия
синтеза Литература

a, Å с, Å V, Å3

5.5874(6) 21.891(3) 591.8(1) Золь-гель метод, 1600°C Наст. работа
5.585 22.06 595.9 Золь-гель метод, 1500°C [11]

5.5846 21.873 590.8 Твердофазный метод, 1550°C [25]
5.5870(1) 21.8732(6) 591.29(2) Твердофазный метод, 1600°C [26]
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Рис. 5. Дифрактограмма PrMgAl11O19.

5 мкм

Рис. 6. Микрофотография гексаалюмината празеодима 
магния, полученного золь-гель методом синтеза и отож-
женного при температуре 1600°C.
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образования было заимствовано из работы [30]. 
Энтропия S° (298.15 K) была рассчитана по дан-
ным низкотемпературной теплоемкости [31] 
с учетом двух структурных переходов при 151 
и 212 K и составила 112.71 Дж/(моль K). Тем-
пературные зависимости термодинамических 
функций в области 298–2000 K были рассчита-
ны по правилу аддитивности. Для оценки стан-
дартной энтальпии образования PrMgAl11O19 из 
простых веществ использовали метод атомных 
сумм, успешно примененный автором [32] для 
оценки термодинамических функций цеолитов. 
Рассчитанное значение ΔfH°(298.15 K) составило 
–10638.9 кДж/моль. Термодинамические функ-
ции PrMgAl11O19 в широком интервале темпера-
тур были взяты из работы [33].

Расчеты показали, что наиболее предпоч-
тительной в данной системе являются реакции 
образования перовскита PrAlO3 и шпинели 
MgAl2O4. Образование гексаалюмината празе-
одима-магния из оксидов термодинамически 
возможно лишь при температурах ниже 1000 K 
(727°С), где ограничения накладывает кине-
тический фактор. При этом совместное обра-
зование PrMgAl11O19 и какой-либо примесной 
фазы (шпинели или перовскита) значительно 
увеличивает температурный интервал возмож-
ного протекания реакций. Энергия Гиббса всех 
реакций образования PrMgAl11O19 увеличивается 
с ростом температуры и при >2000 K становит-
ся положительной (рис. 7), из чего следует, что 

выше этой температуры с большей вероятно-
стью будут протекать реакции разложения. 

Термодинамическая оценка энергии Гиббса 
реакций образования PrMgAl11O19 подтверждает 
экспериментальные данные, полученные в ходе 
исследования. По результатам термического 
анализа, процесс образования гексаалюмина-
тов РЗЭ-магния протекает без выделения тепла 
(рис. 1) [23] и возможен только при подводе до-
полнительной энергии извне, будь то энергия, 
выделяемая в результате экзотермического фазо-
вого перехода метастабильных фаз оксида алю-
миния в a-Al2O3, либо энергия, выделяемая при 
разложении цитратных комплексов. Предпоч-
тительным оказывается получение PrMgAl11O19 
путем разложения прекурсора, полученного  
золь-гель методом синтеза, поскольку в резуль-
тате цитратного горения, которое происходит 
при более низких температурах, выделяется 
большее количество энергии по сравнению с эн-
тальпией фазового перехода в оксиде алюминия. 

ЗАКЛЮЧЕНИЕ
Статья посвящена сравнению двух раствор-

ных методов получения гексаалюмината празе-
одима-магния PrMgAl11O19 с целью установления 
оптимальных параметров синтеза однофазных 
образцов со структурой магнетоплюмбита. 

Термический анализ прекурсоров показал, 
что синтез PrMgAl11O19 методом осаждения идет 
через образование промежуточных фаз – магни-
евой шпинели (MgAl2O4) и алюмината празео-
дима (PrAlO3) со структурой перовскита. Обра-
зование целевого продукта происходит через их 
взаимодействие при температурах выше 1200°C, 
в то время как золь-гель метод синтеза позволя-
ет получить аморфный PrMgAl11O19 с минималь-
ным содержанием примесей в процессе цитрат-
ного горения. 

Термодинамические расчеты подтвердили 
разложение PrMgAl11O19 выше 1700°C и показали, 
что, с одной стороны, следует стремиться к мак-
симальному снижению температуры синтеза, а 
с другой – для инициализации взаимодействия 
необходимо обеспечить подвод дополнитель-
ной энергии извне. Наиболее перспективными в 
этом плане будут методы синтеза, предполагаю-
щие реакцию горения на первой стадии.

В настоящей работе гексаалюминат празео-
дима-магния PrMgAl11O19 был получен методом 
цитратного золь-гель синтеза с последующим 
отжигом при температуре 1600°C. Получен-
ный образец имеет структуру магнетоплюмбита 
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Рис. 7. Температурные зависимости энергии Гиббса реак-
ций образования PrMgAl11O19. 1–4 – номера реакций (см. 
в тексте).
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(пр. гр. P63/mmc) с параметрами кристалличе-
ской ячейки a = 5.5874, c = 21.8911 Å.
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FEATURES OF THE SYNTHESIS OF MAGNESIUM  
PRASEODYMIUM HEXAALUMINATE PrMgAl11O19  

WITH A MAGNETOPLUMBITE STRUCTURE
M. A. Ryumina,  G. E. Nikiforovaa,  P. G. Gagarina, *  O. N. Kondrat’evaa, K. S. Gavrciheva

aKurnakov Institute of General and Inorganic Chemistry of RAS, Moscow, 119991 Russia
*e-mail: gagarin@igic.ras.ru

RE magnesium hexaaluminates with magnetoplumbite structure are considered as potential candidates for ther-
mal barrier coatings. However, the synthesis of single-phase samples is associated with certain difficulties. In this 
work, the features of PrMgAl11O19 preparation by reverse precipitation and citrate sol-gel synthesis are compared. 
Based on the results of thermal analysis of precursors, stepwise annealing of the samples was carried out, fol-
lowed by X-ray phase analysis of the product. It is shown that the optimal condition for producing single-phase 
hexaaluminate PrMgAl11O19 is long-term annealing of tableted precursors obtained by the sol-gel method at a 
temperature of 1600°C. Thermodynamic assessment of possible reactions of praseodymium magnesium hex-
aaluminate formation from oxides confirmed the decomposition of PrMgAl11O19 at temperatures above 1700°C.

Keywords: complex oxides, sol-gel, reverse precipitation, thermal analysisнет
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