RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

SYNTHESIS, HIGH-TEMPERATURE HEAT CAPACITY AND THERMAL CONDUCTIVITY OF MULTI-COMPONENT RARE-EARTH ZIRCONATES

PII
10.31857/S0044457X25040086-1
DOI
10.31857/S0044457X25040086
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
551-559
Abstract
The synthesis of multicomponent single-phase rare earth zirconates LaGdZrO, (LaSmGd)ZrO, (LaSmGdY)ZrO, (LaNdSmGdY)ZrO of the pyrochlore structure was performed. The isobaric heat capacity at 300–1800 K, thermal diffusivity were measured and the thermal conductivity of non-porous samples in the range of 300–1300 K was calculated.
Keywords
цирконаты РЗЭ теплоемкость теплопроводность пирохлоры
Date of publication
15.01.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Ward T.Z., Wilkerson R.P., Musico B.L. et al. // J. Phys. Маtеr. 2024. V. 7. P. 021001. https://doi.org/10.1088/2515-7639/ad2ec5
  2. 2. Dewangan S.K., Mangish A., Kumar S. et al. // Eng. Sci. Technol.Int. J. 2022. V. 35. P. 101211. https://doi.org/10.1016/j.jestch.2022.101211
  3. 3. Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. P. 22. https://doi.org/10.1016/S1369-7021 (05)70934-2
  4. 4. Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. P. 1. https://doi.org/10.1016/S0955-2219 (03)00129-8
  5. 5. Padture N.P. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609
  6. 6. Clarke D.R., Oechner M., Padture N.P. // MRS Bull. 2012. V. 37. P. 891. https://doi.org/10.1557/mrs.2012.232
  7. 7. Perepezko J.H. // Science. 2009. V. 326. P. 1068. https://doi.org/10.1126/science.1179327
  8. 8. Fergus J.W. // Metall. Mater. Trans. E. 2014. V. 1. P. 118. https://doi.org/10.1007/s40553-014-0012-y
  9. 9. Mehboob G., Liu M.-J., Xu T. et al. // Ceram.Int. 2020. V. 46. P. 8497. https://doi.org/10.1016/j.ceramint.2019.12.200
  10. 10. Pan W., Phillpot S.R., Wan C. et al. // MRS Bull. 2012. V. 37. P. 917. https://doi.org/10.1557/mrs.2012.234
  11. 11. Lehmann H., Pitzer D., Pracht G. et al. // J. Am. Ceram. Soc. 2003. V. 86. P. 1338. https://doi.org/10.1111/j.1151-2916.2003.tb03473.x
  12. 12. Zhang J., Guo X., Jung Y.G. et al. // Surf. Coat. Technol. 2017. V. 323. P. 18. https://doi.org/10.1016/j.surfcoat.2016.10.019
  13. 13. Luo X., Luo L., Zhao X. et al. // J. Eur. Ceram. Soc. 2022. V. 42. P. 2391. https://doi.org/10.1016/j.jeurceramsoc.2021.12.080
  14. 14. Ma W., Luo Y., Ma Z. et al. // Ceram.Int. 2023. V. 49. P. 29729. https://doi.org/10.1016/j.ceramint.2023.06.215
  15. 15. An Y., Wan K., Song M. et al. // Ceram.Int. 2024. V. 50. P. 4699. https://doi.org/10.1016/j.ceramint.2023.11.214
  16. 16. Tian Y., Zhao X., Sun Z. et al. // Ceram.Int. 2024. V. 50. P. 19182. https://doi.org/10.1016/j.ceramint.2024.03.018
  17. 17. McCormak S.J., Navrotsky A. // Acta Mater. 2020. V. 202. P. 1. https://doi.org/10.1016/j.ceramint.2020.10.043
  18. 18. Ryu M., Song D., Kim C. et al. // J. Eur. Ceram. Soc. 2023. V. 43. P. 7623. https://doi.org/10.1016.jeurceransoc.2023.02.030
  19. 19. Yang H., Lin G., Bu H. et al. // Ceram.Int. 2022. V. 48. P. 6956. https://doi.org/10.1016/j.ceramint.2021.11.252
  20. 20. Zhang Y., Xie M., Wang Z. et al. // Scripta Mater. 2023. V. 228. Р. 115328. https://doi.org/10.1016/j.scriptamat.2023.115328
  21. 21. Teng Z., Tan Y., Zeng S. et al. // J. Eur. Ceram. Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016.jeurceransoc.2021.01.013
  22. 22. Fu S., Jia Z., Wan D. et al. // Ceram.Int. 2024. V. 50. P. 5510. https://doi.org/10.1016/j.ceramint.2023.11.306
  23. 23. Liu T., Ma B., Zan W. et al. // Ceram.Int. 2024. V. 50. P. 36156. https://doi.org/10.1016/j.ceramint.2024.06.429
  24. 24. Li W., Luo Y., Li C. et al. // Ceram.Int. 2024. V. 50. P. 42862. https://doi.org/10.1016/j.ceramint.2024.08.427
  25. 25. Popov V.V., Menushenkov A.P., Yastrebtsev A.A. et al. // Ceram.Int. 2024. V. 50. P. 5319. https://doi.org/10.1016/j.ceramint.2023.11.283
  26. 26. Albedwawi S.H., Aljaberi A., Haidemenopoulos G.N. et al. // Mater. Design. 2021. V. 202. P. 109534. https://doi.org/10.1016/j.matdes.2021.109534
  27. 27. Гуськов В.Н., Гавричев К.С., Гагарин П.Г. и др. // Журн. неорган. химии. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040
  28. 28. Гуськов В.Н., Гагарин П.Г., Тюрин А.В. и др. // Журн. физ. химии. 2020. Т. 94. С. 163. https://doi.org/10.31857/S004445370020120
  29. 29. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Журн. физ. химии. 2022. Т. 96. С. 1230. https://doi.org/1031857/S004445372209014X
  30. 30. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Ap-pl. Chem. 2022. V. 94. P. 573. https://doi.org/10.1515/pac-2019-0603
  31. 31. Shannon R.D. // Acta Crystallogr., Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976. V. 32. P. 751. https://doi.org/10.1107/S056773947600155110-767
  32. 32. Попов В.В., Петрунин В.Ф., Коровин С.А. и др. // Журн. неорган. химии. 2011. Т. 56. С. 1617. https://doi.org/10.7868/S0044457X13120167
  33. 33. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/jeurceramsoc.2008.01.009
  34. 34. Hutterer P., Lepple M. // J. Am. Ceram. Soc. 2023. V. 106. P. 1547. https://doi.org/10.1111/jace.18832
  35. 35. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786 (83)90001-8
  36. 36. Liu J., Shao G., Liu D. et al. // Mater. Today Adv. 2020. V. 8. 100114. https://doi.org/10.1016/j.mtadv.2020.100114.
  37. 37. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  38. 38. Leitner J., Vonka P., Sedmidubsky D. et al. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  39. 39. Konings R.J. M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. https://doi.org/10.1063/1.4825256
  40. 40. Degueldre C., Tissot P., Lartigue H. et al. // Thermochim. Acta. 2003. V. 403. P. 276. https://doi.org/10.1016/S0040-6031 (03)00060-1
  41. 41. Schlichting K. W., Padture N. P., Klemens P. G. // J. Mater. Sci. 2001. V. 36. P. 3003. https://doi.org/10.1023/a:1017970924312
  42. 42. Agarkov D.A., Borik M.A., Katrich D.S. et al. // J. Solid State Electrochem. 2024. V. 28. P. 1997. https://doi.org/10.1007/s10008-022-05308-6
  43. 43. Wang H., Du X., Shi Y. et al. // Ceram.Int. 2022. V. 48. P. 16444. https://doi.org/10.1016/j.ceramint.2022.02.283
  44. 44. Yu J., Zhao H., Tao S. et al. // J. Eur. Ceram. Soc. 2010. V. 30. P. 799. https://doi.org/10.1016/j.jeurceramsoc.2009.09.010
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library