RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

BINDING OF GOLD(III) USING BISMUTH HEXAMETHYLENEDITHIOCARBAMATE: THE DOUBLE COMPLEXES OF [Au(SCNHm)][Bi(SCNHm)Cl] AND [Au(SCNHm)][Bi(SCNHm)Cl] (PREPARATION, CRYSTAL STRUCTURE, THERMAL BEHAVIOR AND ANTI-MYCOBACTERIAL ACTIVITY)

PII
10.31857/S0044457X25040069-1
DOI
10.31857/S0044457X25040069
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
527-541
Abstract
It was established that during the interaction of bismuth hexamethylenedithiocarbamate (HmDtc) with a H[AuCl]/2M HCl solution, the individual forms of gold(III) binding in the solid phase are double complexes of [Au(SCNHm)][Bi(SCNHm)Cl] (I) and [Au(SCNHm)][Bi(SCNHm)Cl] (II). The structures of the obtained compounds include centrosymmetric/non-centrosymmetric (in I/II) complex cations of Au(III), as well as heteroleptic bismuth anions: both the mononuclear and binuclear, whose the ratio Bi : Dtc : Cl = 1:2:2/2:2:6 (I/II). The secondary S~S and S~Cl interactions that arise between these ionic structural units lead to the formation of three-dimensional supramolecular architectures. In the IR spectra of the compounds, the absorption bands of N–C(S)S bonds were assigned to HmDtc ligands in the inner sphere of Au(III) complex cations and Bi(III) anions. Thermal behavior of I and II was studied using the STA technique. The residual substance obtained after thermolysis of the samples is represented by metallic particles of a solid solution of bismuth in gold, coated with a layer of BiO. For complex I, a high level of anti-mycobacterial activity in vitro was revealed against the non-pathogenic strain Mycolicibacterium smegmatis.
Keywords
двойные дитиокарбаматно-хлоридные комплексы золота(III)-висмута(III) разнолигандные анионы висмута(III) структурная организация вторичные взаимодействия термическое поведение антибактериальная биоактивность
Date of publication
03.12.2024
Year of publication
2024
Number of purchasers
0
Views
3

References

  1. 1. Angeloski A., Flower-Donaldson K., Matar F. et al. // ChemNanoMat. 2024. V. 10. P. e202300514. https://doi.org/10.1002/cnma.202300514
  2. 2. Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 123. P. 111. https://doi.org/10.1016/j.poly.2016.10.026
  3. 3. Sivasekar S., Ramalingam K., Rizzoli C., Alexander N. // Inorg. Chim. Acta. 2014. V. 419. P. 82. https://doi.org/10.1016/j.ica.2014.04.042
  4. 4. Olatunde O.C., Ferjani H., Onwadine D.C. // J. Phys. Chem. Solids. 2023. V. 179. P. 111388. https://doi.org/10.1016/j.jpcs.2023.111388
  5. 5. Новикова Е.В., Егоров Н.В., Нелюбинская К.Л., Иванов А.В. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1433. https://doi.org/10.31857/S0044457X23600548
  6. 6. De Andrade Querino A.L., de Sousa A.M., Thomas S.R. et al. // J. Inorg. Biochem. 2023. V. 247. P. 112346. https://doi.org/10.1016/j.jinorgbio.2023.112346
  7. 7. Li H., Lai C.S., Wu J. et al. // J. Inorg. Biochem. 2007. V. 101. P. 809. https://doi.org/10.1016/j.jinorgbio.2007.01.010
  8. 8. Ishak D.H.A., Ooi K.K., Ang K.-P. et al. // J. Inorg. Biochem. 2014. V. 130. P. 38. https://doi.org/10.1016/j.jinorgbio.2014.01.018
  9. 9. Chan P.F., Ang K.P., Hamid R.A. // J. Biol. Inorg. Chem. 2024. V. 29. P. 217. https://doi.org/10.1007/s00775-023-02041-x
  10. 10. Rosário J.d.S., Moreira F.H., Rosa L.H.F. et al. // Molecules. 2023. V. 28. P. 5921. https://doi.org/10.3390/molecules28155921
  11. 11. Abás E., Aguirre-Ramírez D., Laguna M., Grasa L. // Biomedicines. 2021. V. 9. P. 1775. https://doi.org/10.3390/biomedicines9121775
  12. 12. Луценко И.А., Лосева О.В., Иванов А.В. и др. // Координат. 2022. Т. 48. № 12. С. 739. https://doi.org/10.31857/S0132344X22700062
  13. 13. Ferreira I.P., de Lima G.M., Paniago E.B. et al. // J. Coord. Chem. 2014. V. 67. P. 1097. https://doi.org/10.1080/00958972.2014.908188
  14. 14. Ratia C., Balleh V., Gabasa Y. et al. // Front. Microbiol. 2023. V. 14. P. 1198473. https://doi.org/10.3389/fmich.2023.1198473
  15. 15. Hogarth G. // Mini-Rev. Med. Chem. 2012. V. 12. P. 1202. https://doi.org/10.2174/138955712802762095
  16. 16. Adeyemi J.O., Onwadine D.C. // Molecules. 2020. V. 25. P. 305. https://doi.org/10.3390/molecules25020305
  17. 17. Loseva O.V., Lutsenko I.A., Rodina T.A. et al. // Polyhedron. 2022. V. 226. P. 116097. https://doi.org/10.1016/j.poly.2022.116097
  18. 18. Корнеева Е.В., Луценко И.А., Беккер О.Б. и др. // Координат. 2023. Т. 49. № 2. P. 89. https://doi.org/10.31857/S0132344X22600199
  19. 19. Заева А.С., Иванов А.В., Герасименко А.В., Сергиенко В.Н. // Журн. неорган. химии. 2015. Т. 60. № 2. С. 243. https://doi.org/10.7868/S0044457X15020233
  20. 20. Заева А.С., Иванов А.В., Герасименко А.В. // Координат. 2015. Т. 41. № 10. С. 590. https://doi.org/10.7868/S0132344X15090108
  21. 21. Иванов А.В., Герасименко А.В., Егоров Н.В. и др. // Координат. 2018. Т. 44. № 4. С. 266. https://doi.org/10.1134/S0132344X18040047
  22. 22. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
  23. 23. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  24. 24. Dolomany O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  25. 25. Ramon-García S., Ng C., Anderson H. et al. // Antimicrob. Agents Chemother. 2011. V. 55. P. 3861. https://doi.org/10.1128/AAC.00474-11
  26. 26. Bekker O.B., Sokolov D.N., Luzina O.A. et al. // Med. Chem. Res. 2015. V. 24. P. 2926. https://doi.org/10.1007/s00044-015-1348-2
  27. 27. Bondi A. // J. Phys. Chem. 1964. V. 68. P. 441. https://doi.org/10.1021/j100785a001
  28. 28. Bondi A. // J. Phys. Chem. 1966. V. 70. P. 3006. https://doi.org/10.1021/j100881a503
  29. 29. Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. P. 375. https://doi.org/10.1524/zkri.2009.1158
  30. 30. Bocian D.F., Pickett H.M., Rounds T.C., Strauss H.L. // J. Am. Chem. Soc. 1975. V. 97. P. 687. https://doi.org/10.1021/ja00837a001
  31. 31. Boesenkoel I.K., Boeyens J.C.A. // J. Cryst. Mol. Struct. 1980. V. 10. № 1–2. P. 11. https://doi.org/10.1007/BF01209549
  32. 32. Новикова Е.В., Нелюбинская К.Л., Иванов А.В. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 471. https://doi.org/10.31857/S0044457X22601882
  33. 33. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. P. 1. https://doi.org/10.1016/S0065-2792 (08)60016-3
  34. 34. Wang W., Ji B., Zhang Y. // J. Phys. Chem. A. 2009. V. 113. P. 8132. https://doi.org/10.1021/jp904128b
  35. 35. Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. V. 52. P. 1313. https://doi.org/10.1021/acs.accounts.9b00037
  36. 36. Красулина Л.А., Крымская Н.Е. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979. 240 с.
  37. 37. Корнеева Е.В., Иванов А.В., Герасименко А.В. и др. // Журн. общ. химии. 2019. Т. 89. № 8. С. 1260. https://doi.org/10.1134/S0044460X19080158
  38. 38. Корнеева Е.В., Новикова Е.В., Лосева О.В. и др. // Коорд. химия. 2021. Т. 47. № 11. С. 707. https://doi.org/10.31857/S0132344X2109005X
  39. 39. Yin H.D., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. P. 1133. https://doi.org/10.1080/00958970601008846
  40. 40. Люди Р.А., Андреева Л.Л., Малочко В.А. Константы неорганических веществ: справочник. М.: Дрофа, 2008. 685 с.
  41. 41. Okomoto H., Massalski T.B. // Bull. Alloy Phase Diagrams. 1983. V. 4. P. 401. https://doi.org/10.1007/BF02868093
  42. 42. Корнеева Е.V., Lutsenko I.A., Zinchenko S.V. et al. // Inorg. Chim. Acta. 2024. V. 572. P. 122318. https://doi.org/10.1016/j.ica.2024.122318
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library