- PII
- 10.31857/S0044457X25040069-1
- DOI
- 10.31857/S0044457X25040069
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 4
- Pages
- 527-541
- Abstract
- It was established that during the interaction of bismuth hexamethylenedithiocarbamate (HmDtc) with a H[AuCl]/2M HCl solution, the individual forms of gold(III) binding in the solid phase are double complexes of [Au(SCNHm)][Bi(SCNHm)Cl] (I) and [Au(SCNHm)][Bi(SCNHm)Cl] (II). The structures of the obtained compounds include centrosymmetric/non-centrosymmetric (in I/II) complex cations of Au(III), as well as heteroleptic bismuth anions: both the mononuclear and binuclear, whose the ratio Bi : Dtc : Cl = 1:2:2/2:2:6 (I/II). The secondary S~S and S~Cl interactions that arise between these ionic structural units lead to the formation of three-dimensional supramolecular architectures. In the IR spectra of the compounds, the absorption bands of N–C(S)S bonds were assigned to HmDtc ligands in the inner sphere of Au(III) complex cations and Bi(III) anions. Thermal behavior of I and II was studied using the STA technique. The residual substance obtained after thermolysis of the samples is represented by metallic particles of a solid solution of bismuth in gold, coated with a layer of BiO. For complex I, a high level of anti-mycobacterial activity in vitro was revealed against the non-pathogenic strain Mycolicibacterium smegmatis.
- Keywords
- двойные дитиокарбаматно-хлоридные комплексы золота(III)-висмута(III) разнолигандные анионы висмута(III) структурная организация вторичные взаимодействия термическое поведение антибактериальная биоактивность
- Date of publication
- 03.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 3
References
- 1. Angeloski A., Flower-Donaldson K., Matar F. et al. // ChemNanoMat. 2024. V. 10. P. e202300514. https://doi.org/10.1002/cnma.202300514
- 2. Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 123. P. 111. https://doi.org/10.1016/j.poly.2016.10.026
- 3. Sivasekar S., Ramalingam K., Rizzoli C., Alexander N. // Inorg. Chim. Acta. 2014. V. 419. P. 82. https://doi.org/10.1016/j.ica.2014.04.042
- 4. Olatunde O.C., Ferjani H., Onwadine D.C. // J. Phys. Chem. Solids. 2023. V. 179. P. 111388. https://doi.org/10.1016/j.jpcs.2023.111388
- 5. Новикова Е.В., Егоров Н.В., Нелюбинская К.Л., Иванов А.В. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1433. https://doi.org/10.31857/S0044457X23600548
- 6. De Andrade Querino A.L., de Sousa A.M., Thomas S.R. et al. // J. Inorg. Biochem. 2023. V. 247. P. 112346. https://doi.org/10.1016/j.jinorgbio.2023.112346
- 7. Li H., Lai C.S., Wu J. et al. // J. Inorg. Biochem. 2007. V. 101. P. 809. https://doi.org/10.1016/j.jinorgbio.2007.01.010
- 8. Ishak D.H.A., Ooi K.K., Ang K.-P. et al. // J. Inorg. Biochem. 2014. V. 130. P. 38. https://doi.org/10.1016/j.jinorgbio.2014.01.018
- 9. Chan P.F., Ang K.P., Hamid R.A. // J. Biol. Inorg. Chem. 2024. V. 29. P. 217. https://doi.org/10.1007/s00775-023-02041-x
- 10. Rosário J.d.S., Moreira F.H., Rosa L.H.F. et al. // Molecules. 2023. V. 28. P. 5921. https://doi.org/10.3390/molecules28155921
- 11. Abás E., Aguirre-Ramírez D., Laguna M., Grasa L. // Biomedicines. 2021. V. 9. P. 1775. https://doi.org/10.3390/biomedicines9121775
- 12. Луценко И.А., Лосева О.В., Иванов А.В. и др. // Координат. 2022. Т. 48. № 12. С. 739. https://doi.org/10.31857/S0132344X22700062
- 13. Ferreira I.P., de Lima G.M., Paniago E.B. et al. // J. Coord. Chem. 2014. V. 67. P. 1097. https://doi.org/10.1080/00958972.2014.908188
- 14. Ratia C., Balleh V., Gabasa Y. et al. // Front. Microbiol. 2023. V. 14. P. 1198473. https://doi.org/10.3389/fmich.2023.1198473
- 15. Hogarth G. // Mini-Rev. Med. Chem. 2012. V. 12. P. 1202. https://doi.org/10.2174/138955712802762095
- 16. Adeyemi J.O., Onwadine D.C. // Molecules. 2020. V. 25. P. 305. https://doi.org/10.3390/molecules25020305
- 17. Loseva O.V., Lutsenko I.A., Rodina T.A. et al. // Polyhedron. 2022. V. 226. P. 116097. https://doi.org/10.1016/j.poly.2022.116097
- 18. Корнеева Е.В., Луценко И.А., Беккер О.Б. и др. // Координат. 2023. Т. 49. № 2. P. 89. https://doi.org/10.31857/S0132344X22600199
- 19. Заева А.С., Иванов А.В., Герасименко А.В., Сергиенко В.Н. // Журн. неорган. химии. 2015. Т. 60. № 2. С. 243. https://doi.org/10.7868/S0044457X15020233
- 20. Заева А.С., Иванов А.В., Герасименко А.В. // Координат. 2015. Т. 41. № 10. С. 590. https://doi.org/10.7868/S0132344X15090108
- 21. Иванов А.В., Герасименко А.В., Егоров Н.В. и др. // Координат. 2018. Т. 44. № 4. С. 266. https://doi.org/10.1134/S0132344X18040047
- 22. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
- 23. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 24. Dolomany O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 25. Ramon-García S., Ng C., Anderson H. et al. // Antimicrob. Agents Chemother. 2011. V. 55. P. 3861. https://doi.org/10.1128/AAC.00474-11
- 26. Bekker O.B., Sokolov D.N., Luzina O.A. et al. // Med. Chem. Res. 2015. V. 24. P. 2926. https://doi.org/10.1007/s00044-015-1348-2
- 27. Bondi A. // J. Phys. Chem. 1964. V. 68. P. 441. https://doi.org/10.1021/j100785a001
- 28. Bondi A. // J. Phys. Chem. 1966. V. 70. P. 3006. https://doi.org/10.1021/j100881a503
- 29. Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. P. 375. https://doi.org/10.1524/zkri.2009.1158
- 30. Bocian D.F., Pickett H.M., Rounds T.C., Strauss H.L. // J. Am. Chem. Soc. 1975. V. 97. P. 687. https://doi.org/10.1021/ja00837a001
- 31. Boesenkoel I.K., Boeyens J.C.A. // J. Cryst. Mol. Struct. 1980. V. 10. № 1–2. P. 11. https://doi.org/10.1007/BF01209549
- 32. Новикова Е.В., Нелюбинская К.Л., Иванов А.В. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 471. https://doi.org/10.31857/S0044457X22601882
- 33. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. P. 1. https://doi.org/10.1016/S0065-2792 (08)60016-3
- 34. Wang W., Ji B., Zhang Y. // J. Phys. Chem. A. 2009. V. 113. P. 8132. https://doi.org/10.1021/jp904128b
- 35. Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. V. 52. P. 1313. https://doi.org/10.1021/acs.accounts.9b00037
- 36. Красулина Л.А., Крымская Н.Е. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979. 240 с.
- 37. Корнеева Е.В., Иванов А.В., Герасименко А.В. и др. // Журн. общ. химии. 2019. Т. 89. № 8. С. 1260. https://doi.org/10.1134/S0044460X19080158
- 38. Корнеева Е.В., Новикова Е.В., Лосева О.В. и др. // Коорд. химия. 2021. Т. 47. № 11. С. 707. https://doi.org/10.31857/S0132344X2109005X
- 39. Yin H.D., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. P. 1133. https://doi.org/10.1080/00958970601008846
- 40. Люди Р.А., Андреева Л.Л., Малочко В.А. Константы неорганических веществ: справочник. М.: Дрофа, 2008. 685 с.
- 41. Okomoto H., Massalski T.B. // Bull. Alloy Phase Diagrams. 1983. V. 4. P. 401. https://doi.org/10.1007/BF02868093
- 42. Корнеева Е.V., Lutsenko I.A., Zinchenko S.V. et al. // Inorg. Chim. Acta. 2024. V. 572. P. 122318. https://doi.org/10.1016/j.ica.2024.122318